-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathui_roster.py
639 lines (570 loc) · 20.9 KB
/
ui_roster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
from tkinter import *
from tkinter import ttk
import tkinter.filedialog as filedialog
from tkinter import messagebox
from PIL import Image,ImageDraw,ImageFont
from PIL import ImageTk,ImageGrab
import cv2
import numpy as np
import os
from predictionModel import predictionCNN
import rooster_batch
from PIL.ExifTags import TAGS,GPSTAGS
root=Tk()
root.title('Rootster v1.0 ')
root.geometry("")
root.option_add('*tearoff',False)
emptymenu=Menu(root)
root.config(menu=emptymenu)
screenheight=root.winfo_screenheight()
screenwidth=root.winfo_screenwidth()
print('screenheight',screenheight,'screenwidth',screenwidth)
screenstd=min(screenheight-100,screenwidth-100,850)
# -----variables------
viewopt_var=StringVar()
scaleval=DoubleVar()
# RGBbands=None
RGBimg=None
gridimg=None
gridnum=0
zoom=None
hasGrid=False
hasMap=False
predictlabels=None
confidence=None
hasPred=False
rownum=0
colnum=0
csvname=''
e1=None
ori_height=0
ori_width=0
# ------functions-----
def init_canvas(path):
import zoom_example
global panelA,zoom
rownum=int(rowentry.get())
colnum=int(colentry.get())
zoom=zoom_example.Zoom_Advanced(imageframe,panelA,path,rownum,colnum,1440,900,ori_height,ori_width)
def Open_File():
global RGBimg,filename
head_tail = os.path.split(filename)
originfile, extension = os.path.splitext(head_tail[1])
print(originfile,extension)
if 'HEIC' in extension:
import pyheif
heif_file=pyheif.read(filename)
RGBimg=Image.frombytes(
heif_file.mode,
heif_file.size,
heif_file.data,
"raw",
heif_file.mode,
heif_file.stride,
)
RGBimg.save(head_tail[0]+'/'+originfile+'.jpg',"JPEG")
filename=head_tail[0]+'/'+originfile+'.jpg'
return True
'''batch process HEIC pictures'''
# files=os.listdir(head_tail[0])
# import pyheif
# for tempname in files:
# if 'HEIC' in tempname:
# originfile, extension = os.path.splitext(tempname)
# heif_file = pyheif.read(head_tail[0]+'/'+tempname)
# RGBimg=Image.frombytes(
# heif_file.mode,
# heif_file.size,
# heif_file.data,
# "raw",
# heif_file.mode,
# heif_file.stride,
# )
# RGBimg.save(head_tail[0]+'/'+originfile+'.jpg',"JPEG")
# filename=head_tail[0]+'/'+originfile+'.jpg'
# print(filename)
# return True
try:
Filersc=cv2.imread(filename,flags=cv2.IMREAD_ANYCOLOR)
h,w,c=np.shape(Filersc)
print('image size:',h,w)
global ori_height,ori_width
ori_height=h
ori_width=w
# RGBbands=cv2.cvtColor(Filersc,cv2.COLOR_BGR2RGB)
RGBimg=Image.open(filename)
try:
imginfo=RGBimg.getexif()
except:
return True
# print(imginfo,len(imginfo))
if(len(imginfo))>0:
exif_table={}
for tag,value in imginfo.items():
decoded=TAGS.get(tag,tag)
exif_table[decoded]=value
print(exif_table.keys())
if 'GPSInfo' in exif_table.keys():
gps_info={}
if type(exif_table['GPSInfo'])==dict:
for key in exif_table['GPSInfo'].keys():
decoded=GPSTAGS.get(key,key)
gps_info[decoded]=exif_table['GPSInfo'][key]
GPS_Lat=list(gps_info['GPSLatitude'])
GPS_Long=list(gps_info['GPSLongitude'])
print('Latitude',GPS_Lat[0][0],GPS_Lat[1][0])
print('Longitude',GPS_Long[0][0],GPS_Long[1][0])
else:
return True
else:
return True
else:
return True
# head_tail = os.path.split(filename)
# originfile, extension = os.path.splitext(head_tail[1])
# print('head_tail',head_tail,'originfile',originfile,'extension',extension)
except:
return False
def zoomimage(opt):
global zoom
print(opt)
try:
zoom.wheel(opt)
except:
return
def Open_Multifile():
global gridbutton,rowentry,colentry,exportbutton,filename,zoombar,mapfilebutton,hasMap,hasGrid,hasPred
global reversebutton,predictbutton,slider,predictlabels,confidence
if proc_mode[proc_name].get()=='1':
filename=rooster_batch.Open_batchfolder()
if Open_File()!=False:
root.update()
mapfilebutton.configure(state=DISABLED)
# gridbutton.configure(state=DISABLED)
reversebutton.configure(state=DISABLED)
zoomin.configure(state=NORMAL)
zoomout.configure(state=NORMAL)
rowentry.configure(state=NORMAL)
colentry.configure(state=NORMAL)
gridbutton.configure(state=NORMAL)
exportbutton.configure(state=NORMAL)
# predictbutton.configure(state=NORMAL)
confidence=None
hasGrid=False
init_canvas(filename)
slider.state(["!disabled"])
# slider.bind('<ButtonRelease-1>',changeconfidencerange)
return
filename=filedialog.askopenfilename()
root.update()
if Open_File()!=False:
gridbutton.configure(state=NORMAL)
rowentry.configure(state=NORMAL)
colentry.configure(state=NORMAL)
exportbutton.configure(state=NORMAL)
zoomout.configure(state=NORMAL)
zoomin.configure(state=NORMAL)
mapfilebutton.configure(state=NORMAL)
predictbutton.configure(state=NORMAL)
reversebutton.configure(state=DISABLED)
predictbutton.configure(state=DISABLED)
predictlabels=None
confidence=None
init_canvas(filename)
slider.unbind('<ButtonRelease-1>')
hasMap=False
hasGrid=False
hasPred=False
def Open_Map():
mapfile=filedialog.askopenfilename()
if '.csv' not in mapfile:
messagebox.showerror('Error',message='Map file should be a csv file.')
return
else:
import csv
rows=[]
transrows=[]
if os.name=='nt':
mapfile=r'%s' % mapfile
with open(mapfile,'r',encoding='utf-8-sig') as f:
csvreader=csv.reader(f)
for row in csvreader:
if len(row)!=0:
rows.append(row)
rows.pop(0)
totalgrid=len(rows)
for i in range(totalgrid):
temprow=[int(rows[i][e]) for e in range(4)]
transrows.append(temprow)
# print(temprow)
arrayrow=np.array(transrows)
print(arrayrow.shape)
if arrayrow.shape[1]!=4:
messagebox.showerror('Error', message='Incorrect contents to open. \n Contents shape is:'
+str(arrayrow.shape[0])+'x'+str(arrayrow.shape[1]))
return
rownum=max(arrayrow[:,1])+1
colnum=max(arrayrow[:,2])+1
infected=np.where(arrayrow[:,3]==1)
infected=list(infected)[0]
infected=[ele for ele in infected]
print(totalgrid,rownum,colnum,infected)
global hasGrid,rowentry,colentry,hasMap
global reversebutton,predictbutton,gridbutton
hasGrid=False
hasMap=True
rowentry.configure(state=NORMAL)
rowentry.delete(0,END)
rowentry.insert(END,rownum)
rowentry.configure(state=DISABLED)
colentry.configure(state=NORMAL)
colentry.delete(0,END)
colentry.insert(END,colnum)
colentry.configure(state=DISABLED)
reversebutton.configure(state=DISABLED)
predictbutton.configure(state=NORMAL)
gridbutton.configure(state=DISABLED)
zoom.resetlabels()
setGrid(resetimage=True)
zoom.labelmulti(infected)
def setGrid(resetimage=False):
global gridimg,hasGrid,reversebutton,gridbutton
global rownum, colnum, confidence,slider
print('hasGrid',hasGrid)
if resetimage==True:
rownum=int(rowentry.get())
colnum=int(colentry.get())
print(resetimage,rownum,colnum)
confidence = None
if proc_mode[proc_name].get()=='0':
slider.state(["disabled"])
slider.unbind('<Leave>')
rgbwidth, rgbheight = RGBimg.size
row_stepsize = int(rgbheight / rownum)
col_stepsize = int(rgbwidth / colnum)
gridimg = RGBimg.copy()
draw = ImageDraw.Draw(gridimg)
row_start = 0
row_end = rgbheight
col_start = 0
col_end = rgbwidth
for col in range(0, col_end, col_stepsize):
line = ((col, row_start), (col, row_end))
draw.line(line, fill='white', width=5)
for row in range(0, row_end, row_stepsize):
line = ((col_start, row), (col_end, row))
draw.line(line, fill='white', width=5)
del draw
# gridimg.show()
zoom.changeimage(gridimg, rownum, colnum, False)
hasGrid = True
return
if hasGrid==False:
try:
temprownum=int(rowentry.get())
tempcolnum=int(colentry.get())
except:
return
if rownum != 0 and (rownum != temprownum or colnum != tempcolnum):
res = messagebox.askquestion('Warning', 'Changes happened to rows or cols. Do you want to continue?')
if res == 'no':
return
if res=='yes':
zoom.resetlabels()
rownum=temprownum
colnum=tempcolnum
confidence=None
if proc_mode[proc_name].get()=='0':
slider.state(["disabled"])
slider.unbind('<Leave>')
rgbwidth,rgbheight=RGBimg.size
row_stepsize=int(rgbheight/rownum)
col_stepsize=int(rgbwidth/colnum)
gridimg=RGBimg.copy()
draw=ImageDraw.Draw(gridimg)
row_start=0
row_end=rgbheight
col_start=0
col_end=rgbwidth
for col in range(0,col_end,col_stepsize):
line=((col,row_start),(col,row_end))
draw.line(line,fill='white',width=5)
for row in range(0,row_end,row_stepsize):
line=((col_start,row),(col_end,row))
draw.line(line,fill='white',width=5)
del draw
# gridimg.show()
zoom.changeimage(gridimg,rownum,colnum,hasGrid)
hasGrid=True
if proc_mode[proc_name].get()=='0':
reversebutton.configure(state=NORMAL)
predictbutton.configure(state=NORMAL)
else:
zoom.changeimage(gridimg,0,0,hasGrid)
hasGrid=False
reversebutton.configure(state=DISABLED)
predictbutton.configure(state=DISABLED)
def setReverse():
zoom.labelall()
def printimageexport():
print(imageexport.get())
def exportopts():
global exportoption,imageexport,csvname,e1
exportoption=StringVar()
imageexport=IntVar()
exportoption.set('P')
opt_window=Toplevel()
opt_window.geometry('300x150')
opt_window.title('Export options')
# optionframe=Frame(opt_window)
# optionframe.pack()
checkframe=Frame(opt_window)
checkframe.pack()
# radiostyle=ttk.Style()
# radiostyle.configure('R.TRadiobutton',foreground='White')
# Radiobutton(optionframe,text='Export Prediction',variable=exportoption,value='P').pack(side=LEFT,padx=10,pady=10)
# Radiobutton(optionframe,text='Export Current',variable=exportoption,value='C').pack(side=LEFT,padx=10,pady=10)
Checkbutton(checkframe,text='Export Grid Pictures',variable=imageexport,command=printimageexport).pack(padx=10,pady=10)
head_tail = os.path.split(filename)
originfile, extension = os.path.splitext(head_tail[1])
csvname = originfile + '_labeloutput_' + 'confidthres=' + str(slider.get()) + '.csv'
intro = Label(checkframe, text='Out put csv file name:')
intro.pack()
e1 = Entry(checkframe)
e1.pack()
e1.insert(END, csvname)
Button(checkframe,text='Export!',command=lambda: implementexport(opt_window)).pack(padx=10,pady=10)
opt_window.transient(root)
opt_window.grab_set()
def implementexport(popup):
outpath=filedialog.askdirectory()
root.update()
res=zoom.output()
npimage=res['npimage']
labelimage=res['labeledimage']
infectedlist=res['infectedlist']
import csv
head_tail=os.path.split(filename)
originfile,extension=os.path.splitext(head_tail[1])
# if exportoption.get()=='P':
# outputcsv=outpath+'/'+originfile+'_prediction.csv'
# headline=['index','row','col','prediction']
# if exportoption.get()=='C':
outputcsv=outpath+'/'+e1.get()
headline=['index','row','col','label','prediction','confidence']
with open(outputcsv,mode='w') as f:
csvwriter=csv.writer(f,lineterminator='\n')
csvwriter.writerow(headline)
rownum=int(rowentry.get())
colnum=int(colentry.get())
gridnum=rownum*colnum
outputimg=labelimage.copy()
draw=ImageDraw.Draw(outputimg)
for i in range(gridnum):
index=i+1
row=int(i/colnum)
col=i%colnum
locs=np.where(npimage==index)
x0=min(locs[1])
y0=min(locs[0])
x1=max(locs[1])
y1=max(locs[0])
if int(imageexport.get())==1:
cropimage=RGBimg.crop((x0,y0,x1,y1))
cropimage.save(outpath+'/'+originfile+'_crop_'+str(index)+'.png','PNG')
midx=x0+5
midy=y0+5
state='crop-'+str(index)
draw.text((midx-1, midy+1), text=state, fill='white')
draw.text((midx+1, midy+1), text=state, fill='white')
draw.text((midx-1, midy-1), text=state, fill='white')
draw.text((midx+1, midy-1), text=state, fill='white')
draw.text((midx,midy),text=state,fill='black')
# if exportoption.get()=='P':
# label=predictlabels[i]
# if exportoption.get()=='C':
label=infectedlist[i]
if confidence!=None:
pred_label= 1 if list(confidence)[i]>=float(slider.get()) else 0
confidvalue=list(confidence)[i]
content=[index,row,col,label,pred_label,confidvalue]
else:
content = [index, row, col, label,0,0]
csvwriter.writerow(content)
print(index)
del draw
f.close()
outputimg.save(outpath+'/'+originfile+'_gridimg'+'.png','PNG')
messagebox.showinfo('Output Done!',message='Results are output to'+outpath)
popup.destroy()
def export():
if proc_mode[proc_name].get()=='1':
rooster_batch.batch_exportpath()
if hasGrid==True:
global predictbutton
predictbutton.configure(state=NORMAL)
return
if hasGrid==False:
return
exportopts()
try:
print(exportoption.get(),imageexport.get())
except:
return
def changeconfidencerange(event):
# newconfid=scaleval.get()
newconfid=slider.get()
print(newconfid)
# zoom.changeconfidance(newconfid[0],newconfid[1])
zoom.changeconfidance(newconfid)
def prediction():
global predictlabels,confidence,hasPred
global slider
if confidence is not None:
zoom.showcomparison(confidence,hasPred)
hasPred=-hasPred
return
dlparameter=filedialog.askopenfilename()
root.update()
if dlparameter!='':
if '.pth' not in dlparameter:
messagebox.showerror('Document type error',message='Please load weight document ends with .pth')
return
tail=dlparameter.find('_')
dlmodel=dlparameter[:tail]
dlinput={} #input for deep learning model prediction
# global rownum,colnum
rownumdict={'row':rownum}
colnumdict={'col':colnum}
imgpath={'imagepath':filename}
dlparapath={'weight':dlparameter}
dlmodelvalue={'model':dlmodel}
dlinput.update(rownumdict)
dlinput.update(colnumdict)
dlinput.update(imgpath)
dlinput.update(dlparapath)
dlinput.update(dlmodelvalue)
if proc_mode[proc_name].get()=='1':
rooster_batch.batch_process(dlinput,slider.get())
return
confidence = predictionCNN(dlinput)
#dlinput is the arguments for deep learning model prediction
#return of deep learning model should be probability of being diseases
else:
if proc_mode[proc_name].get()=='1':
rownumdict={'row':rownum}
colnumdict={'col':colnum}
imgpath={'imagepath':filename}
dlparapath={'weight':dlparameter}
dlmodelvalue={'model':''}
dlinput={}
dlinput.update(rownumdict)
dlinput.update(colnumdict)
dlinput.update(imgpath)
dlinput.update(dlparapath)
dlinput.update(dlmodelvalue)
rooster_batch.batch_process(dlinput,slider.get())
return
import random
gridnum = int(rowentry.get()) * int(colentry.get())
randomlabel=(np.array(random.sample(range(0,gridnum),int(gridnum/3))),)
# predictlabels=np.array([0 for i in range(gridnum)])
# predictlabels[randomlabel]=1
confidence=list(np.random.uniform(0.00,1.00,gridnum))
print(len(confidence))
zoom.showcomparison(list(confidence),hasPred)
hasPred=-hasPred
slider.set(0.50)
slider.state(["!disabled"])
slider.bind('<ButtonRelease-1>',changeconfidencerange)
# slider.state(NORMAL,changeconfidencerange)
# global hasGrid
# hasGrid=False
# setGrid()
# zoom.labelmulti(randomlabel)
# ----Display-----
display_fr=Frame(root,width=screenwidth,height=screenheight)
bottomframe=Frame(root)
bottomframe.pack(side=BOTTOM)
display_fr.pack(anchor='center')
imageframe=LabelFrame(display_fr,bd=0)
imageframe.pack()
w=760
l=640
panelA=Canvas(imageframe,width=w,height=l,bg='black')
panelA.grid(padx=20,pady=20)
proc_name='batch_mode'
proc_mode={proc_name:Variable()}
proc_mode[proc_name].set('0')
proc_but=Checkbutton(bottomframe,text=proc_name,variable=proc_mode[proc_name])
proc_but.pack(side=LEFT,padx=20,pady=5)
buttondisplay=LabelFrame(bottomframe,bd=0)
buttondisplay.config(cursor='hand2')
buttondisplay.pack(side=LEFT)
labeloptframe=LabelFrame(bottomframe,bd=0)
labeloptframe.config(cursor='hand2')
labeloptframe.pack(side=LEFT)
gridoptframe=LabelFrame(bottomframe,bd=0)
gridoptframe.config(cursor='hand2')
gridoptframe.pack(side=LEFT)
gridbuttondisplay=LabelFrame(bottomframe,bd=0)
gridbuttondisplay.config(cursor='hand2')
gridbuttondisplay.pack(side=LEFT)
confidframe=LabelFrame(bottomframe,bd=0)
confidframe.config(cursor='hand2')
confidframe.pack(side=LEFT)
outputframe=LabelFrame(bottomframe,bd=0)
outputframe.config(cursor='hand2')
outputframe.pack(side=LEFT)
# ------button opts---------
openfilebutton=Button(buttondisplay,text='Image',cursor='hand2',command=Open_Multifile)
openfilebutton.pack(side=LEFT,padx=20,pady=5)
mapfilebutton=Button(buttondisplay,text='Map',cursor='hand2',command=Open_Map)
mapfilebutton.pack(side=LEFT,padx=20,pady=5)
mapfilebutton.configure(state=DISABLED)
# zoombar=Scale(labeloptframe,from_=50,to=150,orient=HORIZONTAL,command=zoomimage,variable=scaleval)
# scaleval.set(100)
# zoombar.pack(side=LEFT,padx=5)
# zoombar.configure(state=DISABLED,repeatinterval=10)
zoomin=Button(labeloptframe,text=' + ',cursor='hand2',command=lambda: zoomimage(1))
zoomin.pack(side=LEFT)
zoomin.configure(state=DISABLED)
zoomout=Button(labeloptframe,text=' - ',cursor='hand2',command=lambda: zoomimage(0))
zoomout.pack(side=LEFT)
zoomout.configure(state=DISABLED)
rowdef=Label(gridoptframe,text='Row')
rowdef.pack(side=LEFT)
rowentry=Entry(gridoptframe,width=5)
rowentry.insert(END,10)
rowentry.pack(side=LEFT,padx=2)
coldef=Label(gridoptframe,text='Col')
coldef.pack(side=LEFT)
colentry=Entry(gridoptframe,width=5)
colentry.insert(END,10)
colentry.pack(side=LEFT,padx=2)
for widget in gridoptframe.winfo_children():
widget.config(state=DISABLED)
gridbutton=Button(gridbuttondisplay,text='Grid!',cursor='hand2',command=setGrid)
gridbutton.pack(side=LEFT,padx=10)
gridbutton.configure(state=DISABLED)
reversebutton=Button(gridbuttondisplay,text='Reverse',cursor='hand2',command=setReverse)
reversebutton.pack(side=LEFT,padx=10)
reversebutton.configure(state=DISABLED)
predictbutton=Button(gridbuttondisplay,text='Predict',cursor='hand2',command=prediction)
predictbutton.pack(side=LEFT,padx=10)
predictbutton.configure(state=DISABLED)
confidbutton=Label(confidframe,text='Threshold',cursor='hand2')
confidbutton.pack(side=TOP,padx=10)
# confidbutton.configure(state=DISABLED)
# from tkSliderWidget import Slider
# slider=Slider(confidframe,width=100,height=30,min_val=0.50,max_val=1.00,init_lis=[0.75,0.95],show_value=False)
# slider.pack(side=BOTTOM)
# slider.state(DISABLED,changeconfidencerange)
slider=ttk.Scale(confidframe,from_=0.0,to=1.00,orient=HORIZONTAL)
slider.set(0.50)
slider.pack(side=BOTTOM)
slider.state(["disabled"])
exportbutton=Button(outputframe,text='Export',cursor='hand2',command=export)
exportbutton.pack(side=LEFT,padx=10)
exportbutton.configure(state=DISABLED)
root.mainloop()