-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdata_generator.py
104 lines (85 loc) · 3.49 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import logging
import numpy as np
from PIL import Image
from PIL import ImageOps
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import tensorflow as tf
tf.get_logger().setLevel(logging.ERROR)
from tensorflow.keras.utils import Sequence, to_categorical
from augmentation import augmentations
##########################################################################
class DataGenerator(Sequence):
def __init__(self,
data,
labels,
img_dim=(32, 32,3),
batch_size=32,
num_classes=10,
shuffle=True,
jsd=True
):
self.data = data
self.labels = labels
self.img_dim = img_dim
self.batch_size = batch_size
self.num_classes = num_classes
self.shuffle = shuffle
self.jsd = jsd
self.augmentations = augmentations
self.on_epoch_end()
def on_epoch_end(self):
self.indices = np.arange(len(self.data))
if self.shuffle:
np.random.shuffle(self.indices)
def apply_op(self, image, op, severity):
image = np.clip(image * 255., 0, 255).astype(np.uint8)
pil_img = Image.fromarray(image) # Convert to PIL.Image
pil_img = op(pil_img, severity)
return np.asarray(pil_img).astype(np.float32) / 255.
def augment_and_mix(self, image, severity=3, width=3, depth=-1, alpha=1.):
"""Perform AugMix augmentations and compute mixture.
Args:
image: Raw input image as ndarray shape (h, w, c)
severity: Severity of underlying augmentation operators (1-10).
width: Width of augmentation chain
depth: Depth of augmentation chain. -1 or (1, 3)
alpha: Probability coefficient for Beta and Dirichlet distributions.
Returns:
mixed: Augmented and mixed image.
"""
ws = np.random.dirichlet([alpha] * width).astype(np.float32)
m = np.float32(np.random.beta(alpha, alpha))
mix = np.zeros_like(image).astype(np.float32)
for i in range(width):
image_aug = image.copy()
depth = depth if depth > 0 else np.random.randint(1, 4)
for _ in range(depth):
op = np.random.choice(self.augmentations)
image_aug = self.apply_op(image_aug, op, severity)
# Preprocessing commutes since all coefficients are convex
mix += ws[i] * image_aug
# mix the image and return
mixed = (1 - m)*image + m*mix
return mixed
def __len__(self):
return int(np.ceil(len(self.data) / self.batch_size))
def __getitem__(self, idx):
curr_batch = self.indices[idx*self.batch_size:(idx+1)*self.batch_size]
batch_len = len(curr_batch)
X_orig = np.zeros((batch_len, *self.img_dim), dtype=np.float32)
y = np.zeros((batch_len, self.num_classes), dtype=np.float32)
if self.jsd:
X_aug1 = np.zeros_like(X_orig, dtype=np.float32)
X_aug2 = np.zeros_like(X_orig, dtype=np.float32)
for i, index in enumerate(curr_batch):
img = self.data[index]
X_orig[i] = img
if self.jsd:
X_aug1[i] = self.augment_and_mix(img)
X_aug2[i] = self.augment_and_mix(img)
y[i] = self.labels[index]
if not self.jsd:
return X_orig, y
else:
return [X_orig, X_aug1, X_aug2], y