forked from microsoft/CSWin-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabeled_memcached_dataset.py
53 lines (46 loc) · 1.62 KB
/
labeled_memcached_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# ------------------------------------------
# CSWin Transformer
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# written By Xiaoyi Dong
# ------------------------------------------
from torch.utils.data import Dataset
import numpy as np
import io
from PIL import Image
import os
import json
import random
def load_img(filepath):
img = Image.open(filepath).convert('RGB')
return img
class McDataset(Dataset):
def __init__(self, data_root, file_list, phase = 'train', transform=None):
self.transform = transform
self.root = os.path.join(data_root, phase)
temp_label = json.load(open('./dataset/piid_class_index.json', 'r'))
self.labels = {}
for i in range(4):
self.labels[temp_label[str(i)][0]] = i
self.A_paths = []
self.A_labels = []
with open(file_list, 'r') as f:
temp_path = f.readlines()
for path in temp_path:
label = self.labels[path.split('/')[0]]
self.A_paths.append(os.path.join(self.root, path.strip()))
self.A_labels.append(label)
self.num = len(self.A_paths)
self.A_size = len(self.A_paths)
def __len__(self):
return self.num
def __getitem__(self, index):
return self.load_img(index)
# return self.__getitem__(random.randint(0, self.__len__()-1))
def load_img(self, index):
A_path = self.A_paths[index % self.A_size]
A = load_img(A_path)
if self.transform is not None:
A = self.transform(A)
A_label = self.A_labels[index % self.A_size]
return A, A_label