-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpolynomialspectrumfit.m
164 lines (134 loc) · 5.58 KB
/
polynomialspectrumfit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
function [spectrumPolyCoefficients, eBounds, meanErrorMatrix, spectrumFitted] = polynomialspectrumfit(data4D, polyOrder)
%POLYNOMIALSPECTRUMFIT Fits polynomials pixel-by-pixel to x-ray distribution.
%
% polynomialspectrumfit.m
% Takes an LCS energy vs. x-angle vs. y-angle vs. counts array and
% returns a pixel-by-pixel polynomial fit of order n.
%
% Use:
%
%
% Inputs:
% data4D: data imported from CSV file from direct simulation code
% output with ENERGY > X-ANGLE > Y-ANGLE nesting
%
% polyOrder: int of polynomial order we seek to fit
%
% Required Codes:
% loadenergies.m
%
% LINES FOR USE AS A SCRIPT
% polyOrder = 4;
% path = "/Users/haytham/Documents/GitHub/lcs-fxn-fit/";
% file = "/xraydist/35keV_6um_xyn.csv";
% spectrumData = loadenergies(path + file);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% tic
% fprintf('\nLoading spectrum ' + file + '.\n');
% fprintf('This step will take approximately 35 seconds.\n');
% spectrumData = loadenergies(file);
% toc
tic
% fprintf('Starting fit.\n');
% --- Begin Trevor edit
% This is hardcoded in!!
% You may want to make this a function later for changing if needed
% Or maybe set it as some percentage region around the middle so it is not
% dependent on the size of the input
% Must define the "peaky_zone" because we only want to fit the peak in this zone
peaky_zone = [40:60];
options = optimoptions('fmincon', 'Display', 'off', ...
'FunctionTolerance', 1e-10, 'StepTolerance', 1e-12);
% --- End Trevor edit
[m, n, o, ~] = size(data4D);
spectrumPolyCoefficients = zeros(m, n, (polyOrder + 1));
meanErrorMatrix = zeros(m, n, 2);
spectrumFitted = zeros(m, n, o, 2);
scalefactor = zeros(m, n);
eBounds = zeros(m,n,2);
spectrumFitted(:,:,:,1) = data4D(:,:,:,1);
for i = 1:m
for j = 1:n
energy = squeeze(data4D(i,j,:,1));
dEnergy = energy(2) - energy(1);
intensity = squeeze(data4D(i,j,:,2));
power = trapz(energy,intensity);
nonZeroLocations = find(intensity);
truncatedIntensities = intensity(nonZeroLocations);
truncatedEnergies = energy(nonZeroLocations);
%Produce polynomial coefficients to fit to the data at pixel (i,j)
%given an x-rescaling function mu to produce the correct x-values
[p,~,mu] = polyfit(truncatedEnergies, truncatedIntensities, polyOrder);
% --- Begin Trevor edit
if ismember(i, peaky_zone) && ismember(j, peaky_zone)
tmp = (truncatedEnergies - mu(1)) / mu(2);
fun = @(coeff) objective(tmp, truncatedIntensities, coeff);
nonlcon = @(coeff) nonlin_constraints(tmp, truncatedIntensities, coeff);
p = fmincon(fun, p, [], [], [], [], [], [], nonlcon, options);
end
%Correct range of energies (x) to include only non-negative values in
%the evaluated polynomial distribution
y = polyval(p,truncatedEnergies,[],mu);
spectrumPolyCoefficients(i, j,:) = p;
meanErrorMatrix(i,j,:) = mu;
spectrumFitted(i,j,nonZeroLocations,2) = polyval(squeeze(spectrumPolyCoefficients(i, j,:)), energy(nonZeroLocations), [], squeeze(meanErrorMatrix(i,j,:)));
%Clean up stray values outside of single mode distribution
[~, maxLoc] = max(spectrumFitted(i,j,:,2));
scanUp = maxLoc;
scanDown = maxLoc;
while spectrumFitted(i,j,scanUp,2) >= (0.5 * spectrumFitted(i,j,maxLoc,2))
scanUp = scanUp + 1;
end
while (spectrumFitted(i,j,scanUp,2) - spectrumFitted(i,j,scanUp+1,2)) > 0 ...
&& spectrumFitted(i,j,scanUp,2) > 0
scanUp = scanUp + 1;
end
spectrumFitted(i,j,scanUp:end,2) = 0;
while spectrumFitted(i,j,scanDown,2) >= (0.5 * spectrumFitted(i,j,maxLoc,2))
scanDown = scanDown - 1;
end
while (spectrumFitted(i,j,scanDown,2) - spectrumFitted(i,j,scanDown-1,2)) > 0 ...
&& spectrumFitted(i,j,scanDown,2) > 0
scanDown = scanDown - 1;
end
spectrumFitted(i,j,1:scanDown,2) = 0;
% Now redefine nonZeroLocations to include those locations after
% cleaning up the polynomial
nonZeroLocations = find(spectrumFitted(i,j,:,2)>0);
start = nonZeroLocations(1);
finish = nonZeroLocations(end);
fittedPower = trapz(squeeze(spectrumFitted(i,j,:,1)), squeeze(spectrumFitted(i,j,:,2)));
scalefactor = power / fittedPower;
% --- Begin Trevor edit
% No longer want to renormalize since it fits to the integral
% I commented out the line below
spectrumPolyCoefficients(i, j,:) = scalefactor * spectrumPolyCoefficients(i, j,:);
% --- End Trevor edit
spectrumFitted(i,j,nonZeroLocations,2) = polyval(squeeze(spectrumPolyCoefficients(i, j,:)), energy(nonZeroLocations), [], squeeze(meanErrorMatrix(i,j,:)));
eBounds(i,j,1) = energy(start) - dEnergy;
eBounds(i,j,2) = energy(finish) + dEnergy;
end
end
toc
% --- Begin Trevor edit
% Functions to call for fitting
function [y] = model(x, coeff)
y = polyval(coeff, x);
end
function [c, ceq] = nonlin_constraints(x, ydata, coeff)
c = [];
yfit = model(x, coeff);
trap = trapz(x, yfit) - trapz(x, ydata);
[~, argmax] = max(ydata);
ydif = diff(yfit); % setting slope to 0 seems to not work as well and apparently is not needed
peak = yfit(argmax) - ydata(argmax);
%ceq = [trap, ydif(argmax), peak];
ceq = [trap, peak];
end
function [f] = objective(x, ydata, coeff)
yfit = model(x, coeff);
f = sum((yfit - ydata) .^ 2);
end
end % extra end to close out function
% --- End Trevor edit