-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodels.py
93 lines (76 loc) · 2.47 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch
import torch.nn as nn
from layers import *
class MNISTModel(nn.Module):
def __init__(
self,
input_size,
d_model,
n_heads,
update_steps,
dropout,
mode,
scale=None,
num_pattern=1):
super(MNISTModel, self).__init__()
assert d_model % n_heads == 0
self.emb = nn.Linear(input_size, d_model)
self.ln = nn.LayerNorm(d_model)
self.ln2 = nn.LayerNorm(d_model)
if mode in ["sparsemax", 'softmax', 'entmax', 'gsh']:
self.layer = HopfieldPooling(
d_model=d_model,
n_heads=n_heads,
mix=True,
update_steps=update_steps,
dropout=dropout,
mode=mode,
scale=scale,
num_pattern=num_pattern)
self.fc = nn.Linear(d_model*num_pattern, 1)
self.gelu = nn.GELU()
def forward(self, x):
bz, N, c, h, w = x.size()
x = x.view(bz, N, -1)
x = self.ln(self.emb(x))
out = self.ln2(self.gelu(self.layer(x)))
out = out.view(bz, -1)
return self.fc(out).squeeze(-1)
class CIFARModel(nn.Module):
def __init__(
self,
d_model=256,
n_heads=4,
update_steps=1,
dropout=0.1,
mode='softmax',
scale=None,
num_pattern=1):
super(CIFARModel, self).__init__()
assert d_model % n_heads == 0
self.emb = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(4, 2)
self.linear = nn.Linear(1014, d_model)
self.ln = nn.LayerNorm(d_model)
self.ln2 = nn.LayerNorm(d_model)
if mode in ["sparsemax", 'softmax', 'entmax', 'gsh']:
self.layer = HopfieldPooling(
d_model=d_model,
n_heads=n_heads,
mix=True,
update_steps=update_steps,
dropout=dropout,
mode=mode,
scale=scale,
num_pattern=num_pattern)
self.fc = nn.Linear(d_model*num_pattern, 1)
self.gelu = nn.GELU()
def forward(self, x):
bz, N, c, h, w = x.size()
x = x.view(bz*N, c, h, w)
x = self.pool(self.emb(x))
x = x.view(bz, N, -1)
x = self.ln(self.linear(x))
out = self.ln2(self.gelu(self.layer(x)))
out = out.view(bz, -1)
return self.fc(out).squeeze(-1)