-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathR50_coco.yaml
executable file
·63 lines (63 loc) · 1.51 KB
/
R50_coco.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
MODEL:
META_ARCHITECTURE: "MDQE"
WEIGHTS: "detectron2://ImageNetPretrained/torchvision/R-50.pkl"
PIXEL_MEAN: [123.675, 116.280, 103.530]
PIXEL_STD: [58.395, 57.120, 57.375]
MASK_ON: True
RESNETS:
DEPTH: 50
STRIDE_IN_1X1: False
OUT_FEATURES: ["res3", "res4", "res5"]
MDQE:
NUM_OBJECT_QUERIES: 200
ENC_LAYERS: 6
DEC_LAYERS: 6
ENC_NUM_POINTS: 4
DEC_NUM_POINTS: 4
NUM_FEATURE_LEVELS: 4
DEC_TEMPORAL: True
HIDDEN_DIM: 256
NUM_CLASSES: 80
WINDOW_INTER_FRAME_ASSOCIATION: 5
QUERY_EMBED_DIM: 64
DATASETS:
TRAIN: ("coco_2017_train",)
TEST: ("coco_2017_val",)
SOLVER:
IMS_PER_BATCH: 16
BASE_LR: 0.0001
STEPS: (236000,)
MAX_ITER: 267000 # 3x training
WARMUP_FACTOR: 1.0
WARMUP_ITERS: 10
WEIGHT_DECAY: 0.05
OPTIMIZER: "ADAMW"
BACKBONE_MULTIPLIER: 0.1
CLIP_GRADIENTS:
ENABLED: True
CLIP_TYPE: "full_model"
CLIP_VALUE: 0.01
NORM_TYPE: 2.0
AMP:
ENABLED: False # Enable automatic mixed precision for training
INPUT:
FORMAT: "RGB"
SAMPLING_FRAME_NUM: 1
AUGMENTATIONS: []
RANDOM_FLIP: "flip_by_clip"
MIN_SIZE_TRAIN_SAMPLING: "choice_by_clip"
MIN_SIZE_TRAIN: (320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672) #, 704, 736, 768, 800)
MAX_SIZE_TRAIN: 1333
MIN_SIZE_TEST: 800
CROP:
ENABLED: True
TYPE: "absolute_range"
SIZE: [384, 600]
TEST:
EVAL_PERIOD: 5000
DETECTIONS_PER_IMAGE: 100
DATALOADER:
FILTER_EMPTY_ANNOTATIONS: True
NUM_WORKERS: 4
VERSION: 2
OUTPUT_DIR: output/coco/mdqe_r50_coco_bs16_3x_f1/