-
Notifications
You must be signed in to change notification settings - Fork 228
/
Copy pathrun_helixfold.py
377 lines (323 loc) · 16.1 KB
/
run_helixfold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Full AlphaFold protein structure prediction script."""
import sys
import time
import json
import pickle
import random
import logging
import pathlib
import argparse
import numpy as np
from typing import Dict
import paddle
from paddle import distributed as dist
from alphafold_paddle.model import config
from alphafold_paddle.model import model
from alphafold_paddle.relax import relax
from alphafold_paddle.data import pipeline, templates
from alphafold_paddle.data.utils import align_feat, unpad_prediction
from utils.init_env import init_seed, init_distributed_env
from ppfleetx.distributed.protein_folding import dp, dap, bp
from utils.utils import get_custom_amp_list
logging.basicConfig()
logger = logging.getLogger(__file__)
MAX_TEMPLATE_HITS = 20
RELAX_MAX_ITERATIONS = 0
RELAX_ENERGY_TOLERANCE = 2.39
RELAX_STIFFNESS = 10.0
RELAX_EXCLUDE_RESIDUES = []
RELAX_MAX_OUTER_ITERATIONS = 20
@paddle.no_grad()
def predict_structure(
fasta_path: str,
fasta_name: str,
output_dir_base: str,
data_pipeline: pipeline.DataPipeline,
model_runners: Dict[str, model.RunModel],
amber_relaxer: relax.AmberRelaxation,
random_seed: int):
dap_rank = 0
bp_rank = 0
if args.distributed and args.dap_degree > 1:
dap_rank = dap.get_rank_in_group() if dap.get_world_size() > 1 else 0
bp_rank = bp.get_rank_in_group() if bp.get_world_size() > 1 else 0
timings = dict()
output_dir = pathlib.Path(output_dir_base).joinpath(fasta_name)
output_dir.mkdir(parents=True, exist_ok=True)
msa_output_dir = output_dir.joinpath('msas')
msa_output_dir.mkdir(exist_ok=True)
feature_dict = None
features_npz = output_dir.joinpath('features.npz')
features_pkl = output_dir.joinpath('features.pkl')
if features_npz.exists():
logger.info('Use cached features.npz')
feature_dict = np.load(features_npz, allow_pickle=True)
feature_dict = dict(feature_dict)
elif features_pkl.exists():
logger.info('Use cached features.pkl')
with open(features_pkl, 'rb') as f:
feature_dict = pickle.load(f)
else:
if dap_rank == 0 and bp_rank == 0:
t0 = time.time()
feature_dict = data_pipeline.process(
input_fasta_path=fasta_path,
msa_output_dir=msa_output_dir)
timings['features'] = time.time() - t0
with open(features_pkl, 'wb') as f:
pickle.dump(feature_dict, f, protocol=4)
if args.distributed:
dist.barrier()
with open(features_pkl, 'rb') as f:
feature_dict = pickle.load(f)
relaxed_pdbs, plddts = dict(), dict()
for model_name, model_runner in model_runners.items():
logger.info('Running model %s', model_name)
input_features_pkl = output_dir.joinpath(f'{model_name}_input.pkl')
has_cache = input_features_pkl.exists()
t0 = time.time()
processed_feature_dict = model_runner.preprocess(
feature_dict, random_seed, input_features_pkl)
if not has_cache and dap_rank == 0 and bp_rank == 0:
timings[f'process_features_{model_name}'] = time.time() - t0
if args.distributed and args.dap_degree > 1:
processed_feature_dict = align_feat(
processed_feature_dict, args.dap_degree)
def _forward_with_precision(processed_feature_dict):
if args.precision == "bf16":
black_list, white_list = get_custom_amp_list()
with paddle.amp.auto_cast(enable=True, custom_white_list=white_list, custom_black_list=black_list, level=args.amp_level, dtype='bfloat16'):
return model_runner.predict(
processed_feature_dict,
ensemble_representations=True,
return_representations=True)
elif args.precision == "fp32":
return model_runner.predict(
processed_feature_dict,
ensemble_representations=True,
return_representations=True)
else:
raise ValueError("Please choose precision from bf16 and fp32! ")
t0 = time.time()
prediction = _forward_with_precision(processed_feature_dict)
if args.distributed and args.dap_degree > 1:
prediction = unpad_prediction(feature_dict, prediction)
print('########## prediction shape ##########')
model.print_shape(prediction)
if dap_rank == 0 and bp_rank == 0:
timings[f'predict_{model_name}'] = time.time() - t0
aatype = feature_dict['aatype'].argmax(axis=-1)
residue_index = feature_dict['residue_index']
relaxed_pdbs[model_name] = model_runner.postprocess(
aatype, residue_index, amber_relaxer, prediction,
output_dir, 0, timings)
plddts[model_name] = np.mean(prediction['plddt'])
if dap_rank == 0 and bp_rank == 0:
# Rank by pLDDT and write out relaxed PDBs in rank order.
ranked_order = []
for idx, (model_name, _) in enumerate(
sorted(plddts.items(), key=lambda x: x[1], reverse=True)):
ranked_order.append(model_name)
with open(output_dir.joinpath(f'ranked_{idx}.pdb'), 'w') as f:
f.write(relaxed_pdbs[model_name])
with open(output_dir.joinpath('ranking_debug.json'), 'w') as f:
f.write(json.dumps({
'plddts': plddts, 'order': ranked_order}, indent=4))
logger.info('Final timings for %s: %s', fasta_name, timings)
with open(output_dir.joinpath('timings.json'), 'w') as f:
f.write(json.dumps(timings, indent=4))
def main(args):
### check paddle version
if args.distributed:
assert paddle.fluid.core.is_compiled_with_dist(), "Please using the paddle version compiled with distribute."
args.distributed = args.distributed and dist.get_world_size() > 1
dp_rank, dp_nranks = init_distributed_env(args)
### set seed for reproduce experiment results
if args.seed is not None:
args.seed += dp_rank
init_seed(args.seed)
use_small_bfd = args.preset == 'reduced_dbs'
if use_small_bfd:
assert args.small_bfd_database_path is not None
else:
assert args.bfd_database_path is not None
assert args.uniclust30_database_path is not None
if args.preset in ['reduced_dbs', 'full_dbs']:
num_ensemble = 1
elif args.preset == 'casp14':
num_ensemble = 8
# Check for duplicate FASTA file names.
fasta_names = [pathlib.Path(p).stem for p in args.fasta_paths.split(',')]
if len(fasta_names) != len(set(fasta_names)):
raise ValueError('All FASTA paths must have a unique basename.')
try:
template_featurizer = templates.TemplateHitFeaturizer(
mmcif_dir=args.template_mmcif_dir,
max_template_date=args.max_template_date,
max_hits=MAX_TEMPLATE_HITS,
kalign_binary_path=args.kalign_binary_path,
release_dates_path=None,
obsolete_pdbs_path=args.obsolete_pdbs_path)
data_pipeline = pipeline.DataPipeline(
jackhmmer_binary_path=args.jackhmmer_binary_path,
hhblits_binary_path=args.hhblits_binary_path,
hhsearch_binary_path=args.hhsearch_binary_path,
uniref90_database_path=args.uniref90_database_path,
mgnify_database_path=args.mgnify_database_path,
bfd_database_path=args.bfd_database_path,
uniclust30_database_path=args.uniclust30_database_path,
small_bfd_database_path=args.small_bfd_database_path,
pdb70_database_path=args.pdb70_database_path,
template_featurizer=template_featurizer,
use_small_bfd=use_small_bfd)
except Exception:
logger.warning('Failed to create data pipeline, if there is no cache '
'features.pkl, inference job will fail!')
data_pipeline = None
model_runners = dict()
for model_name in args.model_names.split(','):
model_config = config.model_config(model_name)
model_config.data.eval.num_ensemble = num_ensemble
model_config.model.global_config.subbatch_size = args.subbatch_size
data_dir = pathlib.Path(args.data_dir)
params = f'params_{model_name}'
model_params = data_dir.joinpath('params', f'{params}.pdparams')
if not model_params.exists():
model_params = data_dir.joinpath('params', f'{params}.npz')
if args.bp_degree > 1 or args.dap_degree > 1:
model_config.model.global_config.dist_model = True
if args.bp_degree > 1:
model_config.model.global_config.outer_product_mean_position = 'end'
if args.enable_low_memory:
model_config.model.global_config.low_memory = True
model_runner = model.RunModel(model_name, model_config, model_params)
model_runners[model_name] = model_runner
logger.info('Have %d models: %s', len(model_runners),
list(model_runners.keys()))
amber_relaxer = None
if not args.disable_amber_relax:
amber_relaxer = relax.AmberRelaxation(
max_iterations=RELAX_MAX_ITERATIONS,
tolerance=RELAX_ENERGY_TOLERANCE,
stiffness=RELAX_STIFFNESS,
exclude_residues=RELAX_EXCLUDE_RESIDUES,
max_outer_iterations=RELAX_MAX_OUTER_ITERATIONS)
random_seed = args.random_seed
if random_seed is None:
random_seed = random.randrange(sys.maxsize)
logger.info('Using random seed %d for the data pipeline', random_seed)
for fasta_path, fasta_name in zip(args.fasta_paths.split(','), fasta_names):
predict_structure(
fasta_path=fasta_path,
fasta_name=fasta_name,
output_dir_base=args.output_dir,
data_pipeline=data_pipeline,
model_runners=model_runners,
amber_relaxer=amber_relaxer,
random_seed=random_seed)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict protein structure')
parser.add_argument('--fasta_paths', type=str,
default=None, required=True,
help='Paths to FASTA files, each containing '
'one sequence. Paths should be separated by commas. '
'All FASTA paths must have a unique basename as the '
'basename is used to name the output directories for '
'each prediction.')
parser.add_argument('--output_dir', type=str,
default=None, required=True,
help='Path to a directory that will store results.')
parser.add_argument('--model_names', type=str,
default=None, required=True,
help='Names of models to use.')
parser.add_argument('--data_dir', type=str,
default=None, required=True,
help='Path to directory of supporting data.')
parser.add_argument('--jackhmmer_binary_path', type=str,
default='/usr/bin/jackhmmer',
help='Path to the JackHMMER executable.')
parser.add_argument('--hhblits_binary_path', type=str,
default='/usr/bin/hhblits',
help='Path to the HHblits executable.')
parser.add_argument('--hhsearch_binary_path', type=str,
default='/usr/bin/hhsearch',
help='Path to the HHsearch executable.')
parser.add_argument('--kalign_binary_path', type=str,
default='/usr/bin/kalign',
help='Path to the Kalign executable.')
parser.add_argument('--uniref90_database_path', type=str,
default=None, required=True,
help='Path to the Uniref90 database for use '
'by JackHMMER.')
parser.add_argument('--mgnify_database_path', type=str,
default=None, required=True,
help='Path to the MGnify database for use by '
'JackHMMER.')
parser.add_argument('--bfd_database_path', type=str, default=None,
help='Path to the BFD database for use by HHblits.')
parser.add_argument('--small_bfd_database_path', type=str, default=None,
help='Path to the small version of BFD used '
'with the "reduced_dbs" preset.')
parser.add_argument('--uniclust30_database_path', type=str, default=None,
help='Path to the Uniclust30 database for use '
'by HHblits.')
parser.add_argument('--pdb70_database_path', type=str,
default=None, required=True,
help='Path to the PDB70 database for use by '
'HHsearch.')
parser.add_argument('--template_mmcif_dir', type=str,
default=None, required=True,
help='Path to a directory with template mmCIF '
'structures, each named <pdb_id>.cif')
parser.add_argument('--max_template_date', type=str,
default=None, required=True,
help='Maximum template release date to consider. '
'Important if folding historical test sets.')
parser.add_argument('--obsolete_pdbs_path', type=str,
default=None, required=True,
help='Path to file containing a mapping from '
'obsolete PDB IDs to the PDB IDs of their '
'replacements.')
parser.add_argument('--preset',
default='full_dbs', required=True,
choices=['reduced_dbs', 'full_dbs', 'casp14'],
help='Choose preset model configuration - '
'no ensembling and smaller genetic database '
'config (reduced_dbs), no ensembling and full '
'genetic database config (full_dbs) or full '
'genetic database config and 8 model ensemblings '
'(casp14).')
parser.add_argument('--random_seed', type=int,
help='The random seed for the data pipeline. '
'By default, this is randomly generated.')
parser.add_argument("--precision", type=str, choices=['fp32', 'bf16'], default='fp32')
parser.add_argument("--amp_level", type=str, default='O1')
parser.add_argument('--distributed',
action='store_true', default=False,
help='Whether to use distributed DAP inference.')
parser.add_argument("--dap_degree", type=int, default=1)
parser.add_argument("--dap_comm_sync", action='store_true', default=True)
parser.add_argument("--bp_degree", type=int, default=1)
parser.add_argument("--seed", type=int, default=None, help="set seed for reproduce experiment results, None is do not set seed.")
parser.add_argument('--disable_amber_relax',
action='store_true', default=False,
help='Whether to enable relaxation.')
parser.add_argument('--enable_low_memory',
action='store_true', default=False,
help='Whether to infer long protein by using low memory.')
parser.add_argument('--subbatch_size', type=int, default=48)
args = parser.parse_args()
main(args)