-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathtexturecubemaparray.cpp
498 lines (434 loc) · 21 KB
/
texturecubemaparray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/*
* Vulkan Example - Cube map array texture loading and displaying
*
* This sample shows how load and render an cubemap array texture. A single image contains multiple cube maps.
* The cubemap to be displayed is selected in the fragment shader
*
* Copyright (C) 2020-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#include <ktx.h>
#include <ktxvulkan.h>
class VulkanExample : public VulkanExampleBase
{
public:
bool displaySkybox = true;
vks::Texture cubeMapArray;
struct Meshes {
vkglTF::Model skybox;
std::vector<vkglTF::Model> objects;
int32_t objectIndex = 0;
} models;
struct UniformData {
glm::mat4 projection;
glm::mat4 modelView;
glm::mat4 inverseModelview;
float lodBias = 0.0f;
// Used by the fragment shader to select the cubemap from the array cubemap
int cubeMapIndex = 1;
} uniformData;
vks::Buffer uniformBuffer;
struct {
VkPipeline skybox{ VK_NULL_HANDLE };
VkPipeline reflect{ VK_NULL_HANDLE };
} pipelines;
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
std::vector<std::string> objectNames;
VulkanExample() : VulkanExampleBase()
{
title = "Cube map textures";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -4.0f));
camera.setRotationSpeed(0.25f);
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
}
~VulkanExample()
{
if (device) {
vkDestroyImageView(device, cubeMapArray.view, nullptr);
vkDestroyImage(device, cubeMapArray.image, nullptr);
vkDestroySampler(device, cubeMapArray.sampler, nullptr);
vkFreeMemory(device, cubeMapArray.deviceMemory, nullptr);
vkDestroyPipeline(device, pipelines.skybox, nullptr);
vkDestroyPipeline(device, pipelines.reflect, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
uniformBuffer.destroy();
}
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// This sample requires support for cube map arrays
if (deviceFeatures.imageCubeArray) {
enabledFeatures.imageCubeArray = VK_TRUE;
} else {
vks::tools::exitFatal("Selected GPU does not support cube map arrays!", VK_ERROR_FEATURE_NOT_PRESENT);
}
enabledFeatures.imageCubeArray = VK_TRUE;
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
};
// Loads a cubemap array from a file, uploads it to the device and create all Vulkan resources required to display it
void loadCubemapArray(std::string filename, VkFormat format)
{
ktxResult result;
ktxTexture* ktxTexture;
#if defined(__ANDROID__)
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
if (!asset) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
}
size_t size = AAsset_getLength(asset);
assert(size > 0);
ktx_uint8_t *textureData = new ktx_uint8_t[size];
AAsset_read(asset, textureData, size);
AAsset_close(asset);
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
delete[] textureData;
#else
if (!vks::tools::fileExists(filename)) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
}
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
#endif
assert(result == KTX_SUCCESS);
// Get properties required for using and upload texture data from the ktx texture object
cubeMapArray.width = ktxTexture->baseWidth;
cubeMapArray.height = ktxTexture->baseHeight;
cubeMapArray.mipLevels = ktxTexture->numLevels;
cubeMapArray.layerCount = ktxTexture->numLayers;
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
vks::Buffer sourceData;
// Create a host-visible source buffer that contains the raw image data
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = ktxTextureSize;
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &sourceData.buffer));
// Get memory requirements for the source buffer (alignment, memory type bits)
VkMemoryRequirements memReqs;
vkGetBufferMemoryRequirements(device, sourceData.buffer, &memReqs);
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &sourceData.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, sourceData.buffer, sourceData.memory, 0));
// Copy the ktx image data into the source buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device, sourceData.memory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, ktxTextureData, ktxTextureSize);
vkUnmapMemory(device, sourceData.memory);
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = cubeMapArray.mipLevels;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { cubeMapArray.width, cubeMapArray.height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
// Cube faces count as array layers in Vulkan
imageCreateInfo.arrayLayers = 6 * cubeMapArray.layerCount;
// This flag is required for cube map images
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &cubeMapArray.image));
// Allocate memory for the cube map array image
vkGetImageMemoryRequirements(device, cubeMapArray.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &cubeMapArray.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, cubeMapArray.image, cubeMapArray.deviceMemory, 0));
/*
We now copy the parts that make up the cube map array to our image via a command buffer
Cube map arrays in ktx are stored with a layout like this:
- Mip Level 0
- Layer 0 (= Cube map 0)
- Face +X
- Face -X
- Face +Y
- Face -Y
- Face +Z
- Face -Z
- Layer 1 (= Cube map 1)
- Face +X
...
- Mip Level 1
- Layer 0 (= Cube map 0)
- Face +X
...
- Layer 1 (= Cube map 1)
- Face +X
...
*/
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Setup buffer copy regions for each face including all of its miplevels
std::vector<VkBufferImageCopy> bufferCopyRegions;
uint32_t offset = 0;
for (uint32_t face = 0; face < 6; face++) {
for (uint32_t layer = 0; layer < ktxTexture->numLayers; layer++) {
for (uint32_t level = 0; level < ktxTexture->numLevels; level++) {
ktx_size_t offset;
KTX_error_code ret = ktxTexture_GetImageOffset(ktxTexture, level, layer, face, &offset);
assert(ret == KTX_SUCCESS);
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = level;
bufferCopyRegion.imageSubresource.baseArrayLayer = layer * 6 + face;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = ktxTexture->baseWidth >> level;
bufferCopyRegion.imageExtent.height = ktxTexture->baseHeight >> level;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
}
}
}
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = cubeMapArray.mipLevels;
subresourceRange.layerCount = 6 * cubeMapArray.layerCount;
// Transition target image to accept the writes from our buffer to image copies
vks::tools::setImageLayout(copyCmd, cubeMapArray.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange);
// Copy the cube map array buffer parts from the staging buffer to the optimal tiled image
vkCmdCopyBufferToImage(
copyCmd,
sourceData.buffer,
cubeMapArray.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data()
);
// Transition image to shader read layout
cubeMapArray.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vks::tools::setImageLayout(copyCmd, cubeMapArray.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, cubeMapArray.imageLayout, subresourceRange);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
// Create sampler
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = static_cast<float>(cubeMapArray.mipLevels);
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
sampler.maxAnisotropy = 1.0f;
if (vulkanDevice->features.samplerAnisotropy)
{
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
sampler.anisotropyEnable = VK_TRUE;
}
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &cubeMapArray.sampler));
// Create the image view for a cube map array
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.viewType = VK_IMAGE_VIEW_TYPE_CUBE_ARRAY;
view.format = format;
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = 6 * cubeMapArray.layerCount;
view.subresourceRange.levelCount = cubeMapArray.mipLevels;
view.image = cubeMapArray.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &cubeMapArray.view));
// Clean up staging resources
vkFreeMemory(device, sourceData.memory, nullptr);
vkDestroyBuffer(device, sourceData.buffer, nullptr);
ktxTexture_Destroy(ktxTexture);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
// Skybox
if (displaySkybox)
{
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skybox);
models.skybox.draw(drawCmdBuffers[i]);
}
// 3D object
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.reflect);
models.objects[models.objectIndex].draw(drawCmdBuffers[i]);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY;
// Skybox
models.skybox.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags);
// Objects
std::vector<std::string> filenames = { "sphere.gltf", "teapot.gltf", "torusknot.gltf", "venus.gltf" };
objectNames = { "Sphere", "Teapot", "Torusknot", "Venus" };
models.objects.resize(filenames.size());
for (size_t i = 0; i < filenames.size(); i++) {
models.objects[i].loadFromFile(getAssetPath() + "models/" + filenames[i], vulkanDevice, queue, glTFLoadingFlags);
}
// Load the cube map array from a ktx texture file
loadCubemapArray(getAssetPath() + "textures/cubemap_array.ktx", VK_FORMAT_R8G8B8A8_UNORM);
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
// Image descriptor for the cube map array texture
VkDescriptorImageInfo textureDescriptor = vks::initializers::descriptorImageInfo(cubeMapArray.sampler, cubeMapArray.view, cubeMapArray.imageLayout);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
// Binding 1 : Fragment shader cubemap sampler
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureDescriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// Layout
const VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
// Pipelines
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal });
// Skybox pipeline (background cube)
shaderStages[0] = loadShader(getShadersPath() + "texturecubemaparray/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texturecubemaparray/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.skybox));
// Cube map reflect pipeline
shaderStages[0] = loadShader(getShadersPath() + "texturecubemaparray/reflect.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texturecubemaparray/reflect.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Enable depth test and write
depthStencilState.depthWriteEnable = VK_TRUE;
depthStencilState.depthTestEnable = VK_TRUE;
// Flip cull mode
rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.reflect));
}
void prepareUniformBuffers()
{
// Object vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(UniformData)));
// Map persistent
VK_CHECK_RESULT(uniformBuffer.map());
}
void updateUniformBuffers()
{
uniformData.projection = camera.matrices.perspective;
uniformData.modelView = camera.matrices.view;
uniformData.inverseModelview = glm::inverse(camera.matrices.view);
memcpy(uniformBuffer.mapped, &uniformData, sizeof(UniformData));
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffers();
draw();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
overlay->sliderInt("Cube map", &uniformData.cubeMapIndex, 0, cubeMapArray.layerCount - 1);
overlay->sliderFloat("LOD bias", &uniformData.lodBias, 0.0f, (float)cubeMapArray.mipLevels);
if (overlay->comboBox("Object type", &models.objectIndex, objectNames)) {
buildCommandBuffers();
}
if (overlay->checkBox("Skybox", &displaySkybox)) {
buildCommandBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()