-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathim_utils.py
315 lines (272 loc) · 9.96 KB
/
im_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import numpy as np; import csv; from glob import glob; import os; import sys; import imageio
import matplotlib.pyplot as plt; from PIL import Image
import cv2
import random
import itertools
import h5py
import colorsys
from collections import Counter
from scipy.misc import imread, imsave
from skimage.io import imread as skimread
from skimage.transform import resize
from skimage.measure import compare_ssim, compare_psnr
import base64
import pycocotools.mask as cocomask
import os.path as osp
from itertools import permutations, combinations_with_replacement
#fetch images
def fetch_ims(im_path, ext="*.png"):
return sorted(glob(osp.join(im_path, ext)))
def fetch_allpath(base_pth, ext_pth, extension="*.png", drop=False):
final_list = []
for j in ext_pth:
cur_pth = osp.join(base_pth, j)
cur_list = fetch_ims(cur_pth, extension)
if drop:
cur_list.pop(0)
final_list.extend(cur_list)
return final_list
def constraint_boxes(detections, im_shape):
(startX, startY, endX, endY, score) = detections
startX, startY = max(0, startX), max(0, startY)
max_x, max_y = im_shape[1], im_shape[0]
endX, endY = min(endX, max_x-1), min(endY, max_y-1)
detections = (startX, startY, endX, endY, score)
return detections
def check_area(detections, im_shape):
if len(detections) < 1:
raise ValueError("Invalid detection length")
(startX, startY, endX, endY) = detections[:4]
box_width = (endX-startX)
box_height = (endY-startY)
area = box_width * box_height
if area < 10 or box_height < 2 or box_width < 2:
return False
return True
def get_area(boxes):
"""
Area of BB
"""
boxes = np.array(boxes)
if len(boxes.shape) != 2:
area = np.product(boxes[2:4] - boxes[0:2])
else:
area = np.product(boxes[:, 2:4] - boxes[:, 0:2], axis=1)
return area
def get_refined_detection(detections, im_shape, conf):
"""
Constraint the output of detector to lie within the image.
Also check if the detection is valid by measuring area of BB.
detections : [[x_min, y_min, x_max, y_max, score]]
im_shape : (H, W, 3)
"""
refined_detection = []
for dets in detections:
score = dets[-1]
if score<conf:
continue
dets = constraint_boxes(dets, im_shape)
if check_area(dets, im_shape) is False:
continue
refined_detection.append(dets)
refined_detection = np.array(refined_detection)
return refined_detection
def is_outside(detections, im_shape, thresh=0):
dets = [int(i) for i in detections]
startX, startY, endX, endY = [dets[i] for i in range(0, 4)]
if startX-thresh<0 or startY-thresh<0 or endX+thresh>=im_shape[1] or endY+thresh>=im_shape[0]:
return True
def coord_shift(std_coord):
"""
Convert (x_min, y_min, x_max, y_max) to
(x_centroid, y_centroid, aspect_ratio, height)
"""
std_coord = np.array(std_coord)
x_c, y_c = compute_centroid(std_coord)
height = std_coord[3] - std_coord[1]
width = std_coord[2] - std_coord[0]
aspect_ratio = height/width
return np.array([x_c, y_c, aspect_ratio, height])
def inverse_coord_shift(kalman_coord):
"""
opposite of `def coord_shift`
"""
x_c, y_c, aspect_ratio, height = kalman_coord[:4]
width = height / aspect_ratio
x_min = x_c - width / 2
x_max = x_c + width / 2
y_min = y_c - height / 2
y_max = y_c + height / 2
std_coord = np.array([x_min, y_min, x_max, y_max])
return np.int_(np.round(std_coord))
def box_from_centroid(boxes):
"""
Convert (x_centroid, y_centroid, width, height) to
(x_min, y_min, x_max, y_max)
"""
boxes = np.array(boxes)
if len(boxes.shape) > 1:
mins = boxes[:, 0:2] - boxes[:, 2:4]//2
maxes = boxes[:, 0:2] + boxes[:, 2:4]//2
boxes = np.c_[mins, maxes]
else:
mins = boxes[0:2] - boxes[2:4]//2
maxes = boxes[0:2] + boxes[2:4]//2
boxes = np.r_[mins, maxes]
return boxes
def compute_centroid(box):
box = np.array(box)
if len(box.shape) == 1:
centroid = (box[0:2] + box[2:4])/2
else:
centroid = (box[:, 0:2] + box[:, 2:4])/2
return centroid
def plot_boxes(cur_frame, head_map, body_map={}, text=True):
plotting_im = cur_frame.copy()
for index, (t_id, t_dim) in enumerate(head_map.items()):
(startX, startY, endX, endY) = [int(i) for i in t_dim]
cv2.rectangle(plotting_im, (startX, startY), (endX, endY),
(0, 255, 0), 2)
cur_centroid = tuple([(startX+endX)//2,
(startY+endY)//2])
if text:
cv2.putText(plotting_im, str(t_id), cur_centroid,
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 2)
for index, (t_id, t_dim) in enumerate(body_map.items()):
(startX, startY, endX, endY) = [int(i) for i in t_dim]
cv2.rectangle(plotting_im, (startX, startY), (endX, endY),
(0, 255, 0), 2)
return plotting_im
def scatter_particles(box, cent_disp=(-3,0,3), max_particles=100):
"""
This method is used to initialise bounding boxes around initial detection for particles.
"""
box = np.array(box)
init_val = [i for i in combinations_with_replacement(list(cent_disp), 4)]
disp_list = []
for k in init_val:
for i in permutations(k):
disp_list.append(i)
unique_disp_list = np.unique(np.array(disp_list), axis=0)
scattered_particles = box + unique_disp_list
t_particles = []
for part in scattered_particles:
if np.any((part[2:4] - part[0:2])<=0):
continue
t_particles.append(part)
if len(t_particles) > max_particles:
overflow = len(t_particles) - max_particles
t_particles = t_particles[overflow//2:overflow//2+max_particles]
return np.array(t_particles).astype(np.float32)
def get_neighbour_loc(box, p_noise, min_hw=10, h_variance=0.25,
ar_range=(0.7, 1.4), max_particles=100):
"""
ARCHIVED!!! Test code not using anymore!
box : (x_min, y_min, x_max, y_max)
noise : `int`. initial position uncertainity
vel_noise : Uncertainity in velocity estimation.
TODO : remove hard coding
min_hw : Don't allow boxes to be smaller than this
h_variance : amount by which h varies. in decimal
TODO : remove hardcoding
ar_range : Aspect ratio range
"""
box = np.array(box)
final_box = []
x_c, y_c = compute_centroid(box)
h,w = box[2:4] - box[0:2]
h_min = max(min_hw, h-h*h_variance)
h_max = h+h*h_variance
p_noise = int(p_noise)
aspect_ratio = w/h
aspect_ratio_range = np.linspace(ar_range[0]*aspect_ratio,
ar_range[1]*aspect_ratio, 4)
centroid_range = np.linspace(-p_noise, p_noise+1, 4).astype(np.int32)
h_range = np.linspace(int(h_min), int(h_max+1), 4).astype(np.int32)
for i in centroid_range:
for j in centroid_range:
for cur_h in h_range:
for ar in aspect_ratio_range:
cur_w = cur_h * ar
if cur_h<min_hw or cur_w<min_hw:
continue
c_box = box_from_centroid([x_c+i, y_c+j, cur_w, cur_h])
final_box.append(c_box)
final_box = np.array(final_box)
if len(final_box) > max_particles:
idx = np.round(np.linspace(0, len(final_box) - 1, max_particles)).astype(int)
final_box = final_box[idx]
# If boxes are really small, just add the original one and return
if len(final_box) < 1:
np.append(final_box, box)
return final_box
def matrix_histcmp(vec1, vec2):
"""
vec1 : shape : M
vec2 : shape : N
"""
hist_dist = []
for h1 in vec1:
h1_dist = []
for h2 in vec2:
h1_dist.append(cv2.compareHist(h1, h2,
cv2.HISTCMP_BHATTACHARYYA))
hist_dist.append(h1_dist)
return np.array(hist_dist)
def compute_new_hsv(im):
"""
Illuminance and Gamma invariant HSV
"""
eps = 1e-10
r,g,b = np.array(cv2.split(im)) + eps
traditional_hsv = cv2.cvtColor(im, cv2.COLOR_RGB2HSV)
numerator = np.log(r) - np.log(g)
denominator = np.log(r) + np.log(g) - 2*np.log(b) + eps
new_hue = np.clip(np.round(numerator/denominator).astype(np.uint8), 0, 180)
new_hsv = np.zeros_like(traditional_hsv).astype(np.uint8)
new_hsv[:, :, 0] = new_hue
new_hsv[:, :, 1] = traditional_hsv[:, :, 1]
new_hsv[:, :, 2] = traditional_hsv[:, :, 2]
return new_hsv
def compute_histogram(im, kernel=True):
"""
im : cropped patch
kernel : Will perform circular masking
"""
x,y = im.shape[:2]
if kernel:
mask = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(y, x))
mask = mask[:, :, np.newaxis]
else:
mask = np.ones((x,y,1)).astype(np.uint8)
hsv_im = compute_new_hsv(im)
channels = [0,1,2]
hist_size = [8, 8, 8]
hist_range = [0, 180, 0, 256, 0, 256]
# hist_hue = cv2.calcHist([hsv_im], [0],
# mask, [30], [0, 180], False)
# cv2.normalize(hist_hue,hist_hue,0,255,cv2.NORM_MINMAX)
hist = cv2.calcHist([hsv_im], channels,
None, hist_size, hist_range)
image_hist = cv2.normalize(hist,hist,0,255,cv2.NORM_MINMAX)
return image_hist
def check_yposition(public_box, head_box):
"""
Check if Public box has Y coordinate > head box's
"""
# Higher Y centroid condition
h_centroid = compute_centroid(head_box)
box_centroid = compute_centroid(public_box)
if box_centroid[1] > h_centroid[1]:
return True
return False
def warp_pos(pos, warp_matrix):
"""
Warping position for camera motion compensation
"""
import torch
p1 = torch.Tensor([pos[0], pos[1], 1]).view(3, 1)
p2 = torch.Tensor([pos[2], pos[3], 1]).view(3, 1)
p1_n = torch.mm(warp_matrix, p1).view(1, 2)
p2_n = torch.mm(warp_matrix, p2).view(1, 2)
return torch.cat((p1_n, p2_n), 1).view(1, -1)