diff --git a/docs/example.ipynb b/docs/example.ipynb index e864d9e..7e1b572 100644 --- a/docs/example.ipynb +++ b/docs/example.ipynb @@ -11,9 +11,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.1.0\n" + ] + } + ], "source": [ "import linreg_ally\n", "\n", @@ -22,7 +30,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -38,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -47,7 +55,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -56,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -76,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -92,7 +100,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -208,7 +216,7 @@ "4 140.0 3449 10.5 1970-01-01 USA " ] }, - "execution_count": 5, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -231,7 +239,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -251,7 +259,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -299,13 +307,13 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
Pipeline(steps=[('preprocessor',\n", + "Pipeline(steps=[('preprocessor',\n", " ColumnTransformer(transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['Miles_per_Gallon',\n", @@ -730,7 +738,7 @@ " ('onehotencoder',\n", " OneHotEncoder(), ['Origin']),\n", " ('drop', 'drop', ['Name'])])),\n", - " ('model', LinearRegression())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.Pipeline(steps=[('preprocessor',\n", + " ('model', LinearRegression())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org." + " ('drop', 'drop', ['Name'])])Pipeline(steps=[('preprocessor',\n", " ColumnTransformer(transformers=[('standardscaler',\n", " StandardScaler(),\n", " ['Miles_per_Gallon',\n", @@ -740,12 +748,12 @@ " ('onehotencoder',\n", " OneHotEncoder(), ['Origin']),\n", " ('drop', 'drop', ['Name'])])),\n", - " ('model', LinearRegression())])ColumnTransformer(transformers=[('standardscaler', StandardScaler(),\n", + " ('model', LinearRegression())])ColumnTransformer(transformers=[('standardscaler', StandardScaler(),\n", " ['Miles_per_Gallon', 'Cylinders',\n", " 'Displacement', 'Weight_in_lbs',\n", " 'Acceleration']),\n", " ('onehotencoder', OneHotEncoder(), ['Origin']),\n", - " ('drop', 'drop', ['Name'])])['Miles_per_Gallon', 'Cylinders', 'Displacement', 'Weight_in_lbs', 'Acceleration']StandardScaler()['Origin']OneHotEncoder()['Name']dropLinearRegression()['Miles_per_Gallon', 'Cylinders', 'Displacement', 'Weight_in_lbs', 'Acceleration']StandardScaler()['Origin']OneHotEncoder()['Name']dropLinearRegression()