-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
227 lines (177 loc) · 10.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import cv2
from mediapipe.python.solutions import pose as mp_pose
import threading
from winsound import Beep
from json import load, dump
import tkinter as tk
import ctypes
from time import time as current_time
# TO DO :monitor cpu usage, reduce frame processing rate if necessary...
# from psutil import cpu_percent
class PostureMonitor:
def __init__(self):
self.default_threshold = 0.35
self.default_slouching_duration = 5
self.slouching_start = None
self.threshold, self.slouching_duration = self.load_settings()
# Initialize Mediapipe Pose
self.pose = mp_pose.Pose(min_detection_confidence=0.6, min_tracking_confidence=0.6)
# Variables for sound control
self.stop_event = threading.Event()
self.stop_event.set() # Start with sound stopped
self.sound_thread = None
# Load Haar Cascade classifiers
self.frontal_face_classifier = cv2.CascadeClassifier("frontal_face_detection_openCV_Github_file.xml")
self.profile_face_classifier = cv2.CascadeClassifier("profile_side_face_detection_openCV_Github_file.xml")
# Load the threshold from the settings file
def load_settings(self):
try:
with open("posture_settings.json", "r") as f:
settings = load(f)
return settings.get('threshold'), settings.get('slouching_duration')
except FileNotFoundError:
return self.default_threshold, self.default_slouching_duration
def save_settings(self, threshold, slouching_duration):
with open('posture_settings.json', "w") as f:
dump({"threshold": self.threshold, "slouching_duration": self.slouching_duration}, f)
def play_sound_loop(self):
while not self.stop_event.is_set():
Beep(1000, 1000) # Single continuous 1000Hz beep, 1 second duration
def get_ear_positions(self, results, frame, frontal_faces, profile_faces):
# Initialize ear positions
left_ear, right_ear = None, None
# Use Mediapipe ear landmarks if available
if results.pose_landmarks:
left_ear = results.pose_landmarks.landmark[mp_pose.PoseLandmark.LEFT_EAR].z
right_ear = results.pose_landmarks.landmark[mp_pose.PoseLandmark.RIGHT_EAR].z
# Fallback to Haar Cascade face detection if Mediapipe fails to detect ears
if left_ear is None or right_ear is None:
if len(frontal_faces) > 0:
# Use the first detected frontal face
left_ear, right_ear = self.estimate_ear_positions(frontal_faces[0], frame.shape[1], frame.shape[0])
elif len(profile_faces) > 0:
# Use the first detected profile face
left_ear, right_ear = self.estimate_ear_positions(profile_faces[0], frame.shape[1], frame.shape[0])
return left_ear, right_ear
# Function to estimate ear positions from face detection
def estimate_ear_positions(self, face_rect, frame_width, frame_height):
x, y, w, h = face_rect
# Estimate ear positions relative to the face rectangle
left_ear = (x + int(w * 0.2), y + int(h * 0.5)) # 20% from the left edge, 50% from the top
right_ear = (x + int(w * 0.8), y + int(h * 0.5)) # 80% from the left edge, 50% from the top
return left_ear, right_ear
def start_monitoring(self):
# Capture webcam feed
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 320) # Reduce frame width for faster processing
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 240) # Reduce frame height for faster processing
cap.set(cv2.CAP_PROP_FPS, 15) # Lower frame rate to 15 FPS
frame_skip = 3 # Skip frames to reduce CPU usage
frame_counter = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
print("Error: Failed to read frame from webcam. Exiting...")
break
# Skip processing for some frames to reduce cpu usage
frame_counter += 1
if frame_counter % frame_skip != 0:
continue
# Convert the frame to RGB for Mediapipe and grayscale for Haar Cascade
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Process the frame with Mediapipe Pose
results = self.pose.process(rgb_frame)
# Detect faces using Haar Cascade classifiers
frontal_faces = self.frontal_face_classifier.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
profile_faces = self.profile_face_classifier.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
left_ear, right_ear = self.get_ear_positions(results, frame, frontal_faces, profile_faces)
# Analyze posture if ear positions are available
if left_ear is not None and right_ear is not None and results.pose_landmarks:
# Get keypoints for shoulders (including Z-coordinate)
left_shoulder = results.pose_landmarks.landmark[mp_pose.PoseLandmark.LEFT_SHOULDER].z
right_shoulder = results.pose_landmarks.landmark[mp_pose.PoseLandmark.RIGHT_SHOULDER].z
# Calculate depth difference between shoulders and ears
left_diff = abs(left_ear - left_shoulder)
right_diff = abs(right_ear - right_shoulder)
# Classify posture
if left_diff > self.threshold or right_diff > self.threshold:
self.handle_bad_posture(frame, left_diff, right_diff)
else:
self.handle_good_posture(frame, left_diff, right_diff)
# Show the frame
cv2.imshow('Posture Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
self.clean_up(cap)
def display_feedback(self, frame, posture, color):
# Display feedback
cv2.putText(frame, posture, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2, cv2.LINE_AA)
def handle_bad_posture(self, frame, left_diff, right_diff):
posture = f" bad : L {left_diff:.2f} and R {right_diff:.2f}"
color = (0, 0, 255) # Red
self.display_feedback(frame, posture, color)
if self.slouching_start is None:
self.slouching_start = current_time() # slouching start time
if (current_time() - self.slouching_start) > self.slouching_duration:
if self.sound_thread is None or not self.sound_thread.is_alive():
self.stop_event.clear()
self.sound_thread = threading.Thread(target=self.play_sound_loop)
self.sound_thread.daemon = True # Make thread daemon so it exits when main program exits
self.sound_thread.start()
def handle_good_posture(self, frame, left_diff, right_diff):
posture = f" good : L {left_diff:.2f} and R {right_diff:.2f}"
color = (0, 255, 0) # Green
self.display_feedback(frame, posture, color)
self.slouching_start = None
self.stop_event.set()
def clean_up(self, cap):
self.stop_event.set()
if self.sound_thread is not None and self.sound_thread.is_alive():
self.sound_thread.join(timeout=2)
cap.release()
print("Resources released. Exiting...")
cv2.destroyAllWindows()
class PostureApp:
def __init__(self):
self.monitor = PostureMonitor() # Create an instance of PostureMonitor
def run_tk_gui(self):
posture_monitor_interface = tk.Tk()
posture_monitor_interface.title("Posture Monitor Settings")
posture_monitor_interface.geometry("350x220")
# this is the part that displays the app icon on both the taskbar and the tkinter window
myappid = 'tkinter.python.test'
ctypes.windll.shell32.SetCurrentProcessExplicitAppUserModelID(myappid)
posture_monitor_interface.iconbitmap("posture_monitor_icon.ico")
# the tkinter interface isn't automatically the main active window, so force focus on it
posture_monitor_interface.focus_force()
# Font styles
heading_font = ("Helvetica", 14, "bold")
label_font = ("Helvetica", 12)
button_font = ("Helvetica", 12, "bold")
# Header
heading_label = tk.Label(master=posture_monitor_interface, text="Posture Monitor", fg='#388E3C', font=heading_font)
heading_label.pack(pady=10)
# Threshold
threshold_var = tk.DoubleVar(value=self.monitor.threshold)
slouching_duration_var = tk.IntVar(value=self.monitor.slouching_duration)
def save_and_launch():
self.monitor.save_settings(float(threshold_var.get()), int(slouching_duration_var.get()))
posture_monitor_interface.destroy()
self.monitor.start_monitoring()
# Widgets
tk.Label(master= posture_monitor_interface, font= label_font,
text = "Adjust sensitivity threshold \n (Lower = more sensitive, Higher = less sensitive)").pack()
tk.Spinbox(posture_monitor_interface, textvariable=threshold_var, from_=0.25, to=0.5, increment=0.01, font=label_font, state="readonly").pack(pady=5)
tk.Label(master= posture_monitor_interface, font= label_font,
text = "Duration in seconds after which you will be notified").pack()
tk.Spinbox(posture_monitor_interface, textvariable=slouching_duration_var, from_=1, to=30, increment=1, font=label_font, state="readonly").pack(pady=5)
tk.Button(posture_monitor_interface, text="Save and Start Monitoring",
bg='#4CAF50', fg='white', activebackground='#388E3C', activeforeground='white', relief="raised",
command=save_and_launch, font=button_font).pack(pady=10)
# associate some action/shortcut/keyboard clicks with a function
posture_monitor_interface.bind("<Control-w>", lambda _ : posture_monitor_interface.destroy())
posture_monitor_interface.mainloop()
if __name__ == "__main__":
app = PostureApp()
app.run_tk_gui()