-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathfetch_bitcoin_data.py
138 lines (109 loc) · 4.25 KB
/
fetch_bitcoin_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
import pandas as pd
from filecache import filecache
from utils import HTTP, mark_days_since, mark_highs_lows
@filecache(7200) # 2 hours
def fetch_bitcoin_data() -> pd.DataFrame:
"""
Fetches historical Bitcoin data into a DataFrame.
Very early data is discarded due to high volatility.
Returns:
DataFrame containing Bitcoin data.
"""
print('📈 Requesting historical Bitcoin data…')
response = HTTP.get(
'https://api.blockchair.com/bitcoin/blocks',
params={
'a': 'date,count(),min(id),max(id),sum(generation),sum(generation_usd)',
's': 'date(desc)',
},
)
response.raise_for_status()
response_json = response.json()
df = pd.DataFrame(response_json['data'][::-1])
df.rename(
columns={
'date': 'Date',
'count()': 'TotalBlocks',
'min(id)': 'MinBlockID',
'max(id)': 'MaxBlockID',
'sum(generation)': 'TotalGeneration',
'sum(generation_usd)': 'TotalGenerationUSD',
},
inplace=True,
)
df['Date'] = pd.to_datetime(df['Date'])
df['TotalGeneration'] /= 1e8
df['BlockGeneration'] = df['TotalGeneration'] / df['TotalBlocks']
df['BlockGenerationUSD'] = df['TotalGenerationUSD'] / df['TotalBlocks']
df = df.merge(fetch_price_data(), on='Date', how='left')
df.loc[df['Price'].isna(), 'Price'] = df['BlockGenerationUSD'] / df['BlockGeneration']
df['PriceLog'] = np.log(df['Price'])
df['PriceLogInterp'] = np.interp(
x=df['PriceLog'],
xp=(df['PriceLog'].min(), df['PriceLog'].max()),
fp=(0, 1),
)
df = df.loc[df['Date'] >= '2011-06-27']
df.reset_index(drop=True, inplace=True)
df = fix_current_day_data(df)
df = add_block_halving_data(df)
df = mark_highs_lows(df, 'Price', False, round(365 * 2), 180)
# move 2021' peak to the first price peak
df.loc[df['Date'] == '2021-11-09', 'PriceHigh'] = 0
df.loc[df['Date'] == '2021-04-14', 'PriceHigh'] = 1
df = mark_days_since(df, ['PriceHigh', 'PriceLow', 'Halving'])
return df
def fetch_price_data() -> pd.DataFrame:
response = HTTP.get(
'https://api.coinmarketcap.com/data-api/v3/cryptocurrency/detail/chart',
params={
'id': 1,
'range': 'ALL',
},
)
response.raise_for_status()
response_json = response.json()
response_x = [float(k) for k in response_json['data']['points']]
response_y = [value['v'][0] for value in response_json['data']['points'].values()]
df = pd.DataFrame(
{
'Date': response_x,
'Price': response_y,
}
)
df['Date'] = pd.to_datetime(df['Date'], unit='s').dt.tz_localize(None).dt.floor('d')
df.sort_values(by='Date', inplace=True)
df.drop_duplicates('Date', keep='last', inplace=True)
return df
def fix_current_day_data(df: pd.DataFrame) -> pd.DataFrame:
row = df.iloc[-1].copy()
target_total_blocks = 24 * 6
target_scale = target_total_blocks / row['TotalBlocks']
for col_name in ['TotalBlocks', 'TotalGeneration', 'TotalGenerationUSD']:
row[col_name] *= target_scale
df.iloc[-1] = row
return df
def add_block_halving_data(df: pd.DataFrame) -> pd.DataFrame:
reward_halving_every = 210000
current_block_halving_id = reward_halving_every
current_block_production = 50
df['Halving'] = 0
df['NextHalvingBlock'] = current_block_halving_id
while True:
df.loc[
(current_block_halving_id - reward_halving_every) <= df['MaxBlockID'],
'BlockGeneration',
] = current_block_production
block_halving_row = df[
(df['MinBlockID'] <= current_block_halving_id) & (df['MaxBlockID'] >= current_block_halving_id)
].squeeze()
if block_halving_row.shape[0] == 0:
break
current_block_halving_id += reward_halving_every
current_block_production /= 2
df.loc[block_halving_row.name, 'Halving'] = 1
df.loc[df.index > block_halving_row.name, 'NextHalvingBlock'] = current_block_halving_id
df['DaysToHalving'] = pd.to_timedelta((df['NextHalvingBlock'] - df['MaxBlockID']) / (24 * 6), unit='D')
df['NextHalvingDate'] = df['Date'] + df['DaysToHalving']
return df