-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtransformer_of_image.py
236 lines (213 loc) · 8.89 KB
/
transformer_of_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
from net.Convolution import convolution_layer
from net.loss import cross_entropy_loss, mean_square_loss
from net.fullconnect import fclayer
from net.activation import ReLU
from net.flatten import flatten_layer
import numpy as np
import pickle
from net.layernorm import layer_norm
from PatchEmbed import PatchEmbed_flatten, PatchEmbed_convolution
from Position_add import Position_learnable
from attention import attention_layer
from classify import classify_layer
from net.layernorm import layer_norm
from torchvision import datasets
from PIL import Image
import pandas as pd
from copy import deepcopy
abspath = os.path.abspath(__file__)
filename = abspath.split(os.sep)[-1]
abspath = abspath.replace(filename, "")
# https://en.wikipedia.org/wiki/AlexNet
# https://pytorch.org/vision/stable/_modules/torchvision/models/alexnet.html#alexnet
# https://github.com/l5shi/Image-Recognition-on-MNIST-dataset/blob/master/AlexNet.ipynb
def transformer_image_train(num_classes):
epoch = 36
batchsize = 100
lr = 0.001
embed_dim = 96
images_shape = (batchsize, 1, 30-2, 30-2)
n_patch = 7
patchnorm = True
# [0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]
fixed = 1 #False
cls_token = 0 #True
num_h = [2*2] * 6 #[3, 6, 12, 3, 6, 12]
patch_convolu = 0 #False
if patch_convolu:
choose = "_pc"
else:
choose = '_pf'
if patchnorm:
choose += "_pn"
if fixed:
choose += "_fixed"
if cls_token:
choose += "_clstoken"
logfile = os.path.join(logdir, 'log_transformer_of_image_%s.txt'%choose)
fpwrite = open(logfile, 'w', encoding='utf-8')
if patch_convolu:
patchemb = PatchEmbed_convolution(embed_dim, images_shape, n_patch, patchnorm = patchnorm)
else:
patchemb = PatchEmbed_flatten(embed_dim, images_shape, n_patch, patchnorm = patchnorm)
positionL = Position_learnable(n_patch, embed_dim, fixed = fixed)
att1 = attention_layer(embed_dim, num_h[0])
att2 = attention_layer(embed_dim, num_h[1])
att3 = attention_layer(embed_dim, num_h[2])
layers = [patchemb, positionL, att1, att2, att3]
att4 = attention_layer(embed_dim, num_h[3])
att5 = attention_layer(embed_dim, num_h[4])
att6 = attention_layer(embed_dim, num_h[5])
layers += [att4, att5, att6]
norm = layer_norm(embed_dim)
flatten = flatten_layer()
cll = classify_layer(embed_dim, batchsize, n_patch, num_classes, cls_token)
if not cls_token:
layers += [norm, flatten, cll]
else:
layers += [norm, cll]
datapath = os.path.join(abspath, 'dataset')
os.makedirs(datapath, exist_ok=True)
modelpath = os.path.join(abspath, 'model')
os.makedirs(modelpath, exist_ok=True)
if os.path.exists(pretrained_model):
with open(pretrained_model, 'rb') as obj:
models = pickle.load(obj)
cnt = 0
for l in layers:
k = dir(l)
if 'restore_model' in k and 'save_model' in k:
l.restore_model(models[cnt])
cnt += 1
datatest = datasets.MNIST(root = datapath, train=False, download=True)
datatrain = datasets.MNIST(root = datapath, train=True, download=True)
testdata, testlabel = datatest._load_data()
datas, labels = datatrain._load_data()
# */255
testdata, testlabel = testdata.cpu().numpy() / 255, testlabel.cpu().numpy()
datas, labels = datas.cpu().numpy() / 255, labels.cpu().numpy()
#one-hot
test_label = np.zeros((len(testlabel), 10))
test_label[range(len(testlabel)), testlabel] = 1
test_l = testlabel.copy()
testlabel = test_label.copy()
train_label = np.zeros((len(labels), 10))
train_label[range(len(labels)), labels] = 1
train_l = labels.copy()
labels = train_label.copy()
del test_label, train_label
number_image = datas.shape[0]
# for i in range(number_image):
# img = datas[i, :, :]
# Image.fromarray(img.cpu().numpy()).save(os.path.join(abspath, 'dataset', str(i) + ".jpg"))
loss = 999999
iters = number_image//batchsize + number_image%batchsize
dot = np.power(0.001, 1/epoch)
for i in range(25, epoch):
meanloss = 0
# if i!=0:
# lr = lr * dot
if i==20:
lr = lr * 0.1
elif i==33:
lr = lr * 0.1
k = np.arange(len(train_l))
np.random.shuffle(k)
datas = datas[k]
labels = labels[k]
train_l = train_l[k]
for j in range(iters):
images = datas[j*batchsize:(j+1)*batchsize, :, :]
label = labels[j*batchsize:(j+1)*batchsize, :]
label_single = train_l[j*batchsize:(j+1)*batchsize]
images = images[:, np.newaxis, :, :]
if len(images)==0:
continue
for l in range(len(layers)):
if isinstance(layers[l], classify_layer):
if cls_token:
images = layers[l].forward(images[:, 0])
else:
images = layers[l].forward(images)
else:
images = layers[l].forward(images)
loss, delta, predict = cross_entropy_loss(images, label)
meanloss += loss
p = np.argmax(predict, axis=-1)
precision = np.sum(label_single==p) / len(label_single)
fpwrite.write("epoch:{}, lr: {:.6f}, loss: {:.6f}, iters: {}, precision: {:.6f}\n".format(i, lr, loss, j, precision))
fpwrite.flush()
for l in range(len(layers)-1, -1, -1):
delta = layers[l].backward(delta)
layers[l].update(lr)
layers[l].setzero()
acc = 0
length = 0
k = np.arange(len(testdata))
# np.random.seed(999999666)
np.random.shuffle(k)
testdata = testdata[k]
test_l = test_l[k]
testlabel = testlabel[k]
# if i==epoch-1:
# num = len(testdata)
# else:
num = len(testdata)//(1000)
dic = {i:0 for i in range(10)}
for j in range(num):
images = testdata[j*batchsize:(j+1)*batchsize, :, :]
images = images[:, np.newaxis, :, :]
if images.shape[0]==0:
continue
label = testlabel[j * batchsize:(j+1) * batchsize, :]
label_single = test_l[j * batchsize:(j+1) * batchsize]
for l in range(len(layers)):
if isinstance(layers[l], classify_layer):
if cls_token:
images = layers[l].forward(images[:, 0])
else:
images = layers[l].forward(images)
else:
images = layers[l].forward(images)
loss, delta, predict = cross_entropy_loss(images, label)
p = np.argmax(predict, axis=-1)
length += len(label_single)
acc += np.sum(label_single==p)
for ij in range(len(p)):
if p[ij]==label_single[ij]:
dic[p[ij]] += 1
precision = acc / length
meanloss = meanloss / iters
# savemodel
allmodel = []
for l in layers:
k = dir(l)
if 'restore_model' in k and 'save_model' in k:
allmodel.append(l.save_model())
name = "epoch_"+str(i)+"_loss_"+str(round(meanloss, 6))+"_pre_"+str(round(precision, 6))+"_%s.pkl"%choose
with open(os.path.join(modelpath, name), 'wb') as obj:
pickle.dump(allmodel, obj)
# dic['precision'] = precision
# df = pd.DataFrame(dic, index=np.arange(1)).T
# df.to_csv(os.path.join(abspath, name.replace(".pkl", ".csv")), index=True)
fpwrite.write("epoch: {}, testset precision: {}\n\n".format(i, precision))
fpwrite.flush()
fpwrite.close()
if __name__ =="__main__":
savepath = abspath
pretrained_model = r'C:\Users\10696\Desktop\access\numpy_transformer\model\epoch_24_loss_0.211765_pre_0.937__pf_pn_fixed.pkl'
logdir = os.path.join(savepath, 'log')
os.makedirs(logdir, exist_ok=True)
transformer_image_train(10)
'''
https://github.com/google-research/vision_transformer/blob/main/vit_jax/models_vit.py
https://github.com/UdbhavPrasad072300/Transformer-Implementations/blob/main/notebooks/MNIST%20Classification%20-%20ViT.ipynb
https://github.com/s-chh/PyTorch-Vision-Transformer-ViT-MNIST/tree/main
https://itp.uni-frankfurt.de/~gros/StudentProjects/WS22_23_VisualTransformer/
https://jamesmccaffrey.wordpress.com/2023/01/10/a-naive-transformer-architecture-for-mnist-classification-using-pytorch/
https://medium.com/mlearning-ai/vision-transformers-from-scratch-pytorch-a-step-by-step-guide-96c3313c2e0c
https://github.com/BrianPulfer/PapersReimplementations/blob/main/vit/vit_torch.py
https://github.com/microsoft/Swin-Transformer
https://huggingface.co/docs/transformers/v4.27.0/model_doc/vit
'''