-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize_nuscenes.py
155 lines (136 loc) · 7.52 KB
/
optimize_nuscenes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import sys, os
ROOT_DIR = os.path.abspath(os.path.join('', 'src'))
sys.path.insert(0, os.path.join(ROOT_DIR))
import argparse
import json
import numpy as np
import matplotlib.pyplot as plt
from src.utils import str2bool
from src.optimizer_nuscenes import OptimizerNuScenes
from src.data_nuscenes import NuScenesData
from src.utils import collect_eval_results
if __name__ == '__main__':
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("--gpu", dest="gpu", type=int, default=0)
# arg_parser.add_argument("--config_file", dest="config_file", default="jsonfiles/autorfmix.nusc.vehicle.car.json")
arg_parser.add_argument("--config_file", dest="config_file", default="jsonfiles/supnerf.nusc.vehicle.car.json")
arg_parser.add_argument("--model_epoch", dest="model_epoch", default=39, help="Specify certain epoch model to load")
arg_parser.add_argument("--seg_source", dest="seg_source", default='instance',
help="use predicted instance/panoptic segmentation on nuscenes dataset")
arg_parser.add_argument("--num_workers", dest="num_workers", type=int, default=0)
arg_parser.add_argument("--opt_multiview", dest="opt_multiview", default=False,
help="if to optimize multiple annotations of the same instance jointly")
arg_parser.add_argument("--opt_pose", dest="opt_pose", type=int, default=1,
help="0: given init pose, optimize codes only."
"1: given init pose, optimize both pose and codes. ")
arg_parser.add_argument("--reg_iters", dest="reg_iters", type=int, default=3,
help="number of iters to use dl regressor to update."
"If 0, pose updates purely rely on Nerf BP")
arg_parser.add_argument("--add_pose_err", dest="add_pose_err", type=int, default=2,
help="0: no error pose from dataset"
"1: controlled pose err from dataset"
"2: full range pose err in reasonable range"
"3: use associated third-party 3d detection results with target mask")
arg_parser.add_argument("--init_rot_err", dest="init_rot_err", type=float, default=0.0,
help="Apply initial error of rotation in radians")
arg_parser.add_argument("--init_trans_err", dest="init_trans_err", type=float, default=0.2,
help="Apply initial error of translation in ratio of distance to object center")
arg_parser.add_argument("--rand_angle_lim", dest="rand_angle_lim", type=float, default=0,
help="normally 0 for test case, np.pi/9 is normally used for training")
arg_parser.add_argument("--pred_box2d", dest="pred_box2d", type=int, default=0,
help="whether to use predicted 2d box from maskrcnn for optimization")
arg_parser.add_argument("--pred_wlh", dest="pred_wlh", type=int, default=0,
help="whether to use wlh of 3d box from nerf model")
arg_parser.add_argument("--vis", dest="vis", type=int, default=1,
help="0: no image saved; 1: save start and end frame; 2: save all frames")
arg_parser.add_argument("--cross_eval_folder", dest="cross_eval_folder",
default=None,
help="the previously saved folder to conduct cross-view evaluation. If given skip optimize")
arg_parser.add_argument("--num_subset", dest="num_subset", type=int, default=1,
help="number of subsets the whole dataset is divided into.")
arg_parser.add_argument("--id_subset", dest="id_subset", type=int, default=0,
help="the id of subset to process.")
arg_parser.add_argument("--nusc-version", dest="nusc_version", type=str, default='v1.0-trainval')
args = arg_parser.parse_args()
# Read Hyper-parameters
with open(args.config_file, 'r') as f:
hpams = json.load(f)
hpams_pose_refiner = None
hpams_pose_regressor = None
nusc_data_dir = hpams['dataset']['test_data_dir']
nusc_seg_dir = os.path.join(nusc_data_dir, 'pred_' + args.seg_source)
# nusc_version = hpams['dataset']['test_nusc_version']
det3d_path = os.path.join(nusc_data_dir, 'pred_det3d')
# create dataset
nusc_dataset = NuScenesData(
hpams,
nusc_data_dir,
nusc_seg_dir,
args.nusc_version,
split='val',
debug=False,
add_pose_err=args.add_pose_err,
init_rot_err=args.init_rot_err,
init_trans_err=args.init_trans_err,
rand_angle_lim=args.rand_angle_lim,
det3d_path=det3d_path,
pred_box2d=args.pred_box2d,
num_subset=args.num_subset,
id_subset=args.id_subset
)
# create optimizer
save_postfix = '_nuscenes'
if args.opt_multiview:
save_postfix += '_multiview'
code_level = 0 # save at instance level, cross view, not cross scene
else:
code_level = 2
save_postfix += f'_opt_pose_{args.opt_pose}'
if args.add_pose_err == 1:
save_postfix += f'_rot_err_{args.init_rot_err}_trans_err_{args.init_trans_err}'
elif args.add_pose_err == 2:
save_postfix += '_poss_err_full'
elif args.add_pose_err == 3:
save_postfix += '_poss_pred_det3d'
if hpams['arch'] == 'supnerf':
save_postfix = f'{save_postfix}_reg_iters_{args.reg_iters}'
if 'pred_wlh' in hpams['net_hyperparams'].keys() and hpams['net_hyperparams']['pred_wlh'] > 0 and args.pred_wlh:
save_postfix += f'_pred_wlh{args.pred_wlh}'
if args.pred_box2d:
save_postfix += '_pred_box2d'
# if 'trainval' in hpams['dataset']['test_nusc_version']:
if 'trainval' in args.nusc_version:
save_postfix += '_full_val'
if args.num_subset != 1:
save_postfix += f'_subset_{args.id_subset}_of_{args.num_subset}'
optimizer = OptimizerNuScenes(args.gpu, nusc_dataset, hpams,
model_epoch=args.model_epoch, code_level=code_level,
opt_pose=args.opt_pose,
reg_iters=args.reg_iters,
opt_multiview=args.opt_multiview,
pred_wlh=args.pred_wlh,
cross_eval_folder=args.cross_eval_folder,
num_workers=args.num_workers, shuffle=False, save_postfix=save_postfix, save_freq=1000, vis=args.vis)
# run-time optimization
if args.cross_eval_folder is None:
optimizer.run()
else:
optimizer.save_dir = args.cross_eval_folder
# conduct cross-view evaluation of rgb and depth (multi-view optimization does not need, just use mean)
if not args.opt_multiview:
cross_vis_iter = 50 if args.vis > 0 else None
optimizer.eval_cross_view(vis_iter=cross_vis_iter)
cross_eval_file = os.path.join(optimizer.cross_eval_folder, 'cross_eval.pth')
else:
cross_eval_file = None
# eval summary
if args.opt_pose > 0:
fig, axes = plt.subplots(2, 2, figsize=(6, 6))
result_file = os.path.join(optimizer.save_dir, 'codes+poses.pth')
else:
fig, axes = plt.subplots(1, 2, figsize=(6, 3))
result_file = os.path.join(optimizer.save_dir, 'codes.pth')
collect_eval_results(result_file, hpams['optimize']['num_opts'], axes, 'b', args.opt_pose, cross_eval_file)
plt.tight_layout()
plt.savefig(os.path.join(optimizer.save_dir, 'eval.pdf'), format="pdf")
# plt.show()