-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_nuscenes.py
115 lines (99 loc) · 5.36 KB
/
train_nuscenes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import sys, os
ROOT_DIR = os.path.abspath(os.path.join('', 'src'))
sys.path.insert(0, os.path.join(ROOT_DIR))
import argparse
import json
import wandb
from datetime import date, datetime
from src.trainer_nerf_nuscenes import TrainerNerfNuscenes
from src.trainer_unified_nuscenes import TrainerUnifiedNuscenes
from src.data_nuscenes import NuScenesData
if __name__ == '__main__':
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("--gpus", dest="gpus", type=int, default=4,
help='Number of GPUs to use')
arg_parser.add_argument("--config_file", dest="config_file", default="jsonfiles/supnerf.nusc.vehicle.car.json")
arg_parser.add_argument("--seg_source", dest="seg_source",
default='instance',
help="use predicted instance/panoptic segmentation on nuscenes dataset")
arg_parser.add_argument("--pretrained_model_dir", dest="pretrained_model_dir", default=None,
help="location of saved pretrained model and codes")
arg_parser.add_argument("--batch_size", dest="batch_size", type=int, default=48)
arg_parser.add_argument("--num_workers", dest="num_workers", type=int, default=16)
arg_parser.add_argument("--epochs", dest="epochs", type=int, default=40)
arg_parser.add_argument("--resume_from_epoch", dest="resume_from_epoch", default=None)
arg_parser.add_argument("--resume_dir", dest="resume_dir", default=None)
arg_parser.add_argument("--im_enc_rate", dest="im_enc_rate", type=float, default=1.0,
help="the rate to mix the use of encoder code and track-wise recode code")
arg_parser.add_argument("--pred_box2d", dest="pred_box2d", type=int, default=0,
help="whether to use predicted 2d box from maskrcnn for optimization")
arg_parser.add_argument("--aug_box2d", dest="aug_box2d", type=int, default=0,
help="whether to use augment 2d box for more diverse crop")
arg_parser.add_argument("--aug_wlh", dest="aug_wlh", type=int, default=0,
help="whether to use augment 3d box wlh for more robustness to different test wlh")
arg_parser.add_argument("--finetune_wlh", dest="finetune_wlh", type=int, default=0,
help="if the training finetune wlh, training apply wlh loss")
arg_parser.add_argument("--render_sz", dest="render_sz", type=int, default=None,
help="If not None, image will be resized to get tgt rgb value for the nerf loss")
args = arg_parser.parse_args()
# Read Hyper-parameters
with open(args.config_file, 'r') as f:
hpams = json.load(f)
nusc_data_dir = hpams['dataset']['train_data_dir']
nusc_seg_dir = os.path.join(nusc_data_dir, 'pred_' + args.seg_source)
nusc_version = hpams['dataset']['train_nusc_version']
save_dir = hpams['dataset'][
'nusc_cat'] + '.' + nusc_version + '.use_' + args.seg_source + f'.bsize{args.batch_size}'
if 'autorf' in args.config_file or 'supnerf' in args.config_file:
if hpams['net_hyperparams']['norm_layer_type'] == 'InstanceNorm2d':
save_dir += '.insnorm'
save_dir += f'.e_rate{args.im_enc_rate}'
if args.pred_box2d:
save_dir += '_pred_box2d'
if args.aug_box2d:
save_dir += '_aug_box2d'
if args.aug_wlh:
save_dir += '_aug_wlh'
if args.finetune_wlh:
save_dir += '_finetune_wlh'
if hpams['net_hyperparams']['pred_wlh'] == 0:
print('ERROR: network arch does not support wlh finetune')
sys.exit()
today = date.today()
log_name = os.path.basename(save_dir) + datetime.now().strftime('_%Y_%m_%d_%H_%M_%S')
dt_str = today.strftime('_%Y_%m_%d')
save_dir += dt_str
# create dataset
nusc_dataset = NuScenesData(
hpams,
nusc_data_dir,
nusc_seg_dir,
nusc_version,
split='train',
out_gt_depth=False,
add_pose_err=2,
pred_box2d=args.pred_box2d,
aug_box2d=args.aug_box2d,
render_sz=args.render_sz,
prepare_batch_rays=True
)
if 'supnerf' in args.config_file:
# create trainer
trainer = TrainerUnifiedNuscenes(save_dir, args.gpus, nusc_dataset,
args.pretrained_model_dir,
args.resume_from_epoch, args.resume_dir,
args.config_file,
args.batch_size, num_workers=args.num_workers, shuffle=True,
im_enc_rate=args.im_enc_rate, aug_box2d=args.aug_box2d, aug_wlh=args.aug_wlh,
finetune_wlh=args.finetune_wlh)
else:
# create trainer
trainer = TrainerNerfNuscenes(save_dir, args.gpus, nusc_dataset,
args.pretrained_model_dir,
args.resume_from_epoch, args.resume_dir,
args.config_file,
args.batch_size, num_workers=args.num_workers, shuffle=True,
im_enc_rate=args.im_enc_rate)
# wandb.init(project="SUPNeRF", entity="33yuliangguo", config=hpams, name=log_name)
# training
trainer.train(args.epochs)