-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlinear_equation.py
52 lines (38 loc) · 1.49 KB
/
linear_equation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import random
import string
import time
from lib import genetics_algorithm
random.seed(time.time())
integer_points_per_variable = 5
decimal_points_per_variable = 4
genes_per_variable = integer_points_per_variable + decimal_points_per_variable + 1
coefficients = [-1, 2, 3, 4]
def variable_chromosome_representation(chromosome):
x = float(''.join(chromosome[1:len(chromosome) - decimal_points_per_variable]) + '.' + ''.join(
chromosome[len(chromosome) - decimal_points_per_variable:]))
if int(chromosome[0]) > 5:
x = -x
return x
def chromosome_representation(chromosome):
variables_representations = []
for i in range(len(coefficients) - 1):
variable_chromosome = ''.join(chromosome[i * genes_per_variable:(i + 1) * genes_per_variable])
variables_representations.append(variable_chromosome_representation(variable_chromosome))
return variables_representations
def fitness_function(chromosome):
variables = chromosome_representation(chromosome)
l_eq_sum = 0
for i, coefficient in enumerate(coefficients[:len(coefficients) - 1]):
l_eq_sum += coefficient * variables[i]
l_eq_sum += coefficients[-1]
return abs(l_eq_sum)
genetics_algorithm(
generations=1000,
chromosome_length=genes_per_variable * (len(coefficients) - 1),
tournament_size=2,
population_size=100,
mutation_rate=0.1,
fitness_function=fitness_function,
alphabet=string.digits,
chromosome_representation=chromosome_representation
)