-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentangled.py
342 lines (293 loc) · 12.2 KB
/
entangled.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
"""
Definitions:
- 'basis kets' are any bitstrings with a single '1' only
- A basis ket with a '1' at index 'i' is referred to as 'e_i'
- 'non-basis kets' are bitstrings with '1' occuring in at least two places
Logic:
- Given a Statevector Dictionary, separate all kets into basis kets and
non-basis kets
- For each non-basis ket, decompose it into its corresponding basis kets
and apply the Entanglement Criteria
- Output the result: whether or not the Statevector is Entangled
Implementation:
- basis kets are bitstring representations of powers of 2. non-basis kets
are bitstring representations of all other integers. A 'decomposition' of a
non-basis ket into basis kets means expressing any integer that is not a
power of two into a sum of integers that are powers of two, e.g. the integer:
13 = 8 + 4 + 1
corresponds to:
1101 = 1000 + 0100 + 0001
in binary.
- the input to the algorithm must be a Qiskit Statevector of length 2**n,
corresponding to a linear combination of all possible n-qubit states
- the algorithm can be implemented two ways:
1. use Qiskit Statevector Dictionary. this is my preferred method.
Statevector Dictionary uses bitstrings as keys to denote kets, and
stores the amplitudes as values.
- Given a number of qubits `n`, generate a list of bitstrings of
length `n` of all zeros and a single '1' at index 'i', for
every index 0 <= i < n
- This list contains the binary representation of all basis kets in a
Statevector Dictionary
2. use Qiskit Statevector. this stores amplitudes in a list where each ket
is referenced by its index. the decimal value of the index
corresponds to the binary representation of the ket.
- Given a number of qubits `n`, generate a list of powers of two
from 2**0 to 2**(n-1)
- This list contains the decimal indices of basis kets in a Statevector
With either representation:
- Generate a list of non-basis kets in the Statevector by removing all
basis kets from the entire list of kets
- For each non-basis ket:
- generate a list of its corresponding basis kets
- compute the product of the basis ket amplitudes
- check whether its amplitude is equal to the product of its
corresponding basis ket amplitudes and record the boolean result
- The Entanglement Criteria says that if any boolean check is False, then
the state is Entangled. If all boolean checks are True, the state is
Not Entangled.
Notes:
- I have only tested this with statevectors where the amplitude of the zero
ket |000...> is manually set to 1 by my user input, or set to 1 from the
normalized_random_state() function in the create_statevector module.
- Currently, the algorithm will return incorrect results for any statevector
with a zero ket that has any other amplitude. This needs to be corrected
by 'normalizing' any Statevector so that the zero ket has amplitude 1.
- In instances where the zero ket has amplitude 0, e.g., a statevector such as:
|psi> = |1000> + |0100> + |0001> + |1101>
we need to perform a 'basis change' before applying the criteria, as
outlined in Kauffman's paper. This has not yet been implemented.
"""
# Get list of powers of two in binary (default) or decimal
# We refer to these values as 'basis-kets'
# inputs:
# - n = number of qubits
# - (optional) kets = list of all bitstrings of length n
# - (optional) base = 10
# output:
# - list of powers of two from 2**0 to 2**(n-1)
def powers_of_two(n, kets=None, base=None):
if base == 10:
# compute and store powers of two in base 10
return [2**(n-1-i) for i in range(n)]
elif kets:
# statevector keys() as input, choose only powers of two
return [kets[2**(n-1-i)] for i in range(n)]
else:
# construct binary strings directly
return [format(1 << (n - 1 - i) | 0, '0'+str(n)+'b') for i in range(n)]
# Get list of non powers of two in binary (default) or decimal
# We refer to these values as 'non-basis kets'
# inputs:
# - n = number of qubits,
# - powers = list of powers of 2
# - (optional) kets = list of all bitstrings of length n
# - (optional) base = 10
# output:
# - list of non-powers of two less than 2**(n-1)
def non_basis_kets(n, powers, kets=None, base=None):
if base == 10:
# generate a list of decimal integers without powers of two
non_basis_kets = [i for i in range(1,2**n) if i not in powers]
elif kets:
# statevector keys() as input, remove powers of two
non_basis_kets = [ket for ket in kets[1:] if ket not in powers]
else:
# construct binary strings directly
non_basis_kets = [format(i, '0'+str(n)+'b') for i in range(1,2**n)]
for p in powers:
non_basis_kets.remove(p)
return non_basis_kets
# Determine basis kets corresponding to a non-basis ket
# Use this to reference basis kets in a Qiskit Statevector Dictionary
# Kets are all represented by binary strings
# inputs:
# - ket = a non-basis ket of length 'n'
# - powers = list of all basis kets of length 'n'
# output:
# - list of basis kets whose binary sum equals the non-basis ket
def get_basis_kets(ket, powers):
basis_kets = [powers[index] for index, bit in enumerate(ket) if bit == "1"]
return basis_kets
# Determine the integer powers of two that sum to a non-power of two
# Use this to reference basis kets by their indices in a Qiskit Statevector
# inputs:
# - powers = list of powers of two
# - k = non-basis ket index
# output:
# - list of basis ket indices
def get_basis_indices(k, powers):
k_list = []
for p in powers:
if k < p:
pass
else:
k = k - p
k_list.append(p)
return k_list
# Create a dictionary of non-basis kets and their corresponding basis kets
# inputs:
# - list = list of non-basis kets (binary) or non-basis ket indices
# - powers = list of all basis kets of length n (binary) or their ket indices
# - (optional) base = 10 (when using indices)
# output:
# - dictionary containing:
# - keys: the non-basis kets provided above
# - values: dictionaries initialized with a list of their corresponding
# basis kets
def non_basis_kets_dict(list, powers, base=None):
dict = {}
if base == 10:
# use decimal function
get_kets = get_basis_indices
else:
# use binary function
get_kets = get_basis_kets
for ket in list:
m = ket
basis_kets = get_kets(ket, powers)
dict[m] = { 'basis_kets': basis_kets }
return dict
# Compute the product of ket amplitudes
# This function works with either decimal or binary representations of kets
# inputs:
# - statevector or statevector dictionary
# - list of kets as decimal indices or as binary strings
# output:
# - product of the amplitudes of the given kets
def basis_amplitude_product(statevector, index_list):
product = 1
for index in index_list:
product = product*statevector[index]
return product
# Equality check
# input: two values
# output: True or False
# Make lambda function?
def is_equal(a, b):
return a == b
# Check equality of a non-basis ket amplitude with the product of its
# corresponding basis ket amplitudes, and store the results in a dictionary.
# This is a self-contained method to check the criteria on a specific ket
# without having to run the algorithm for all kets.
# inputs:
# - a statevector dictionary
# - a non-basis ket (binary)
# - (optional) list of corresponding basis kets
# output:
# - dictionary with computed amplitude and boolean check value
def check_single_ket(statevector, ket, basis_kets=None):
dict = {}
if basis_kets == None:
# if basis kets not provided, generate them
basis_kets = generate_basis_kets(ket)
dict['basis_kets'] = basis_kets
# get product of basis ket amplitudes
# append result to dictionary
dict['target_amplitude'] = basis_amplitude_product(statevector, basis_kets)
# check if ket amplitude = product of basis ket amplitudes
# append boolean result to dictionary
dict['equality'] = is_equal(statevector[ket], dict['target_amplitude'])
# Print Statements
def print_statements():
product_string = basis_product_string(basis_kets)
print_entanglement_equation(ket, product_string, dict['equality'])
if dict['equality'] == False:
print_basis_amplitudes(product_string, dict['target_amplitude'])
# print_statements()
return dict
# Generate basis kets corresponding to a specific non-basis ket
# Method 1 (binary)
# Use with Qiskit Statevector Dictionary and function check_single_ket when a
# list of basis kets is not provided
# input:
# - bitstring representing a non-basis ket
# output:
# - a list of bitstrings representing the corresponding basis kets
def generate_basis_kets(ketstring):
length = len(ketstring)
basis_kets = [format(1 << (length - 1 - index) | 0, '0'+str(length)+'b')
for index, bit in enumerate(ketstring) if bit == "1"]
return basis_kets
# Generate basis indices corresponding to a specific non-basis ket index
# Method 2 (decimal)
# Use with Qiskit Statevector and function check_single_ket when a list of
# basis kets is not provided
# input:
# - bitstring representing a non-basis ket
# output:
# - decimal indices representing the corresponding basis kets
def generate_basis_indices(ket):
indices = [2**(len(ket) - 1 - index) for index, bit in enumerate(ket)
if bit == "1"]
return indices
# Print Product of basis kets Expression
# input:
# - list of basis kets for a non-basis ket
def basis_product_string(list):
product = "Psi['"+list[0]+"']"
for index in list[1:]:
product = product + "*Psi['"+index+"']"
return product
# Print Product of basis kets Amplitude
# input:
# - kets = text string reference to product of a list of basis ket amplitudes
# - amplitude = the numerical value of the product of the amplitudes
def print_basis_amplitudes(kets, amplitude):
print(kets + " = " + str(amplitude))
# Print non-basis ket amplitude
# inputs:
# - ket = text string reference to a non-basis ket amplitude
# - amplitude = numerical value of amplitude
def print_ket_amplitude(ket, amplitude):
print("Psi['"+ket+"'] = " + str(amplitude))
# Print True/False check statement
# inputs:
# - non-basis ket
# - product of basis ket string
# - boolean check value
def print_entanglement_equation(ket, basis_elements, bool):
print("Psi['"+ket+"']" + " == " + basis_elements + " is " + str(bool))
# Entanglement Function
# At this time, this function only uses binary ket represenations
# input:
# - statevector = Qiskit Statevector Dictionary
# output:
# - dict = dictionary, where:
# - keys: all non-basis kets in the statevector
# - values: dictionaries containing:
# - corresponding basis kets
# - target amplitude (product of basis ket amplitudes)
# - boolean equality check
# - print statement indicating whether or not the state is Entangled
def entangled(statevector):
# get number of qubits
number_qubits = len(list(statevector.keys())[0])
# generate list of all basis kets
powers = powers_of_two(number_qubits)
# generate list of all non-basis kets
non_basis_kets_list = non_basis_kets(number_qubits, powers)
# store all non-basis kets in dictionary
dict = non_basis_kets_dict(non_basis_kets_list, powers)
# initalize booleans
booleans = set()
# apply entanglement criteria for each ket
for ket in dict:
# get results from check single ket
ket_results = check_single_ket(
statevector,
ket,
dict[ket]['basis_kets']
)
# update dictionary with results
# faster way to do this? items()?
dict[ket]['target_amplitude'] = ket_results['target_amplitude']
dict[ket]['equality'] = ket_results['equality']
booleans.add(dict[ket]['equality'])
# conclusion
# rewrite as separate function
if False in booleans:
print("|Psi> is Entangled")
else:
print("|Psi> is not Entangled")
return dict