-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathcafa.py
executable file
·465 lines (416 loc) · 14.7 KB
/
cafa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#!/usr/bin/env python
import sys
import os
import numpy as np
import pandas as pd
from aaindex import is_ok
import gzip as gz
from utils import EXP_CODES, get_gene_ontology, get_anchestors
MAXLEN = 1000
def get_fly_mapping():
map1 = dict()
with open('data/fly_uni.dat') as f:
for line in f:
it = line.strip().split('\t')
map1[it[0]] = it[1]
res = dict()
with open('data/fly_idmapping.dat') as f:
for line in f:
it = line.strip().split('\t')
if it[0] in map1:
res[it[1]] = map1[it[0]]
return res
def read_fasta(filename):
data = list()
c = 0
with open(filename, 'r') as f:
seq = ''
for line in f:
line = line.strip()
if line.startswith('>'):
if seq != '':
data.append(seq)
line = line[1:].split()[0]
# line = line[1] + '\t' + line[2]
seq = line + '\t'
else:
seq += line
data.append(seq)
print(c)
return data
def get_annotations():
w = open('data/cafa3/tremble.tab', 'w')
with gz.open('data/uniprot_trembl.dat.gz', 'r') as f:
prot_id = ''
prot_ac = ''
annots = list()
for line in f:
items = line.strip().split(' ')
if items[0] == 'ID' and len(items) > 1:
if prot_id != '' and len(annots) > 0:
w.write(prot_id + '\t' + prot_ac)
for go_id in annots:
w.write('\t' + go_id)
w.write('\n')
prot_id = items[1]
annots = list()
elif items[0] == 'AC' and len(items) > 1:
prot_ac = items[1]
elif items[0] == 'DR' and len(items) > 1:
items = items[1].split('; ')
if items[0] == 'GO':
go_id = items[1]
code = items[3].split(':')[0]
if code in EXP_CODES:
annots.append(go_id + '|' + code)
if len(annots) > 0:
w.write(prot_id + '\t' + prot_ac)
for go_id in annots:
w.write('\t' + go_id)
w.write('\n')
w.close()
def get_sequences():
prots = set()
with open('data/cafa3/tremble.tab') as f:
for line in f:
it = line.strip().split('\t')
prots.add(it[0])
w = open('data/cafa3/tremble_sequences.tab', 'w')
with gz.open('data/uniprot_trembl.dat.gz', 'r') as f:
prot_id = ''
for line in f:
items = line.strip().split(' ')
if items[0] == 'ID' and len(items) > 1:
prot_id = items[1]
elif items[0] == 'SQ':
if prot_id not in prots:
continue
seq = next(f).strip().replace(' ', '')
while True:
sq = next(f).strip().replace(' ', '')
if sq == '//':
break
else:
seq += sq
w.write(prot_id + '\t' + seq + '\n')
w.close()
def fasta2tabs():
cafa_root = 'data/cafa3/CAFA3_targets/'
data = list()
# for dr in os.listdir(cafa_root):
# if os.path.isdir(cafa_root + 'Targets/'):
for fl in os.listdir('data/eshark/'):
if fl.endswith('.fasta'):
seqs = read_fasta('data/eshark/' + fl)
data += seqs
with open('data/eshark/targets.txt', 'w') as f:
for line in data:
f.write(line + '\n')
def sprot2tabs():
data = read_fasta('data/cafa3/uniprot_trembl.fasta')
with open('data/cafa3/uniprot_trembl.tab', 'w') as f:
for line in data:
f.write(line + '\n')
def cafa3():
root = 'data/cafa3/CAFA3_training_data/'
filename = root + 'uniprot_sprot_exp.fasta'
data = read_fasta(filename)
annots = dict()
with open(root + 'uniprot_sprot_exp.txt') as f:
for line in f:
items = line.strip().split('\t')
if items[0] not in annots:
annots[items[0]] = set()
annots[items[0]].add(items[1])
fl = open(root + 'uniprot_sprot.tab', 'w')
for line in data:
items = line.split('\t')
if is_ok(items[1]) and items[0] in annots:
fl.write(line + '\t')
gos = list(annots[items[0]])
fl.write(gos[0])
for go_id in gos[1:]:
fl.write('; ' + go_id)
fl.write('\n')
def get_blast_mapping():
mapping = {}
with open('data/eshark/eshark.out') as f:
for line in f:
# if not line.startswith('evm.model'):
# continue
it = line.strip().split()
mapping[it[0]] = it[1]
return mapping
def get_data():
proteins = list()
targets = list()
orgs = list()
ngrams = list()
ngram_df = pd.read_pickle('data/eshark/ngrams.pkl')
vocab = {}
mapping = get_blast_mapping()
for key, gram in enumerate(ngram_df['ngrams']):
vocab[gram] = key + 1
gram_len = len(ngram_df['ngrams'][0])
print(('Gram length:', gram_len))
print(('Vocabulary size:', len(vocab)))
with open('data/eshark/targets.txt') as f:
for line in f:
it = line.strip().split('\t')
seq = it[1]
if is_ok(seq):
# orgs.append(it[0])
targets.append(it[0])
if it[0] in mapping:
proteins.append(mapping[it[0]])
else:
proteins.append('')
grams = np.zeros((len(seq) - gram_len + 1, ), dtype='int32')
for i in range(len(seq) - gram_len + 1):
grams[i] = vocab[seq[i: (i + gram_len)]]
ngrams.append(grams)
df = pd.DataFrame({
'targets': targets,
'accessions': proteins,
'ngrams': ngrams})
print((len(df)))
embed_df = pd.read_pickle('data/graph_new_embeddings.pkl')
df = pd.merge(df, embed_df, on='accessions', how='left')
missing_rep = 0
for i, row in df.iterrows():
if not isinstance(row['embeddings'], np.ndarray):
row['embeddings'] = np.zeros((256,), dtype='float32')
missing_rep += 1
print(missing_rep)
df.to_pickle('data/eshark/targets.pkl')
def cafa2string():
rep_prots = set()
with open('data/uni_mapping.tab') as f:
for line in f:
items = line.strip().split('\t')
rep_prots.add(items[0])
c = 0
with open('data/cafa3/targets.txt') as f:
for line in f:
items = line.strip().split('\t')
if items[0] in rep_prots:
c += 1
print(c)
def get_real_annotations():
go = get_gene_ontology()
df = pd.read_pickle('data/cafa3/swissprot_exp.pkl')
annots = {}
for i, row in df.iterrows():
go_set = set()
for go_id in row['annots']:
go_id = go_id.split('|')
if go_id[0] in go and go_id[1] in EXP_CODES:
go_set |= get_anchestors(go, go_id[0])
annots[row['proteins']] = go_set
return annots
def get_results(model):
root = 'data/swissprot/done/'
mf_df = pd.read_pickle(root + 'mf.pkl')
cc_df = pd.read_pickle(root + 'cc.pkl')
bp_df = pd.read_pickle(root + 'bp.pkl')
targets = pd.read_pickle(root + 'targets.pkl')
mf_preds = pd.read_pickle(root + model + '_preds_mf.pkl')
mf_preds = mf_preds.rename(index=str, columns={"predictions": "mf"})
cc_preds = pd.read_pickle(root + model + '_preds_cc.pkl')
cc_preds = cc_preds.rename(index=str, columns={"predictions": "cc"})
bp_preds = pd.read_pickle(root + model + '_preds_bp.pkl')
bp_preds = bp_preds.rename(index=str, columns={"predictions": "bp"})
df = pd.merge(targets, mf_preds, on='targets')
df = pd.merge(df, cc_preds, on='targets')
df = pd.merge(df, bp_preds, on='targets')
mf = list(map(str, mf_df['functions'].values))
cc = list(map(str, cc_df['functions'].values))
bp = list(map(str, bp_df['functions'].values))
taxons = set(df['orgs'].values)
annots = get_real_annotations()
for tax_id in taxons:
res_df = df.loc[df['orgs'] == tax_id]
results = {}
for i, row in res_df.iterrows():
prot_id = str(row['proteins'])
target_id = str(row['targets'])
if target_id not in results:
results[target_id] = {}
scores = np.round(row['mf'], 2)
for j, go_id in enumerate(mf):
score = scores[j]
if score >= 0.01:
results[target_id][go_id] = score
scores = np.round(row['cc'], 2)
for j, go_id in enumerate(cc):
score = scores[j]
if score >= 0.01:
results[target_id][go_id] = score
scores = np.round(row['bp'], 2)
for j, go_id in enumerate(bp):
score = scores[j]
if score >= 0.01:
results[target_id][go_id] = score
if prot_id in annots:
for go_id in annots[prot_id]:
results[target_id][go_id] = 1.0
with open(root + 'model3/' + 'cbrcborg_3_' + tax_id + '.txt', 'w') as f:
f.write('AUTHOR CBRC_BORG\n')
f.write('MODEL 3\n')
f.write('KEYWORDS sequence properties, machine learning.\n')
for target_id, annots in results.items():
for go_id, score in annots.items():
sc = '%.2f' % score
f.write(target_id + '\t' + go_id + '\t' + sc + '\n')
f.write('END\n')
def get_predictions():
root = 'data/cafa3/'
annots = {}
preds = {}
go = get_gene_ontology()
mf = pd.read_pickle(root + 'mf.pkl')
mf_df = pd.read_pickle(root + 'test-mf-preds.pkl')
functions = mf['functions']
for i, row in mf_df.iterrows():
prot_id = row['proteins']
if prot_id not in preds:
preds[prot_id] = set()
for i in range(len(functions)):
if row['predictions'][i] == 1:
preds[prot_id].add(functions[i])
if prot_id not in annots:
annots[prot_id] = row['gos']
cc = pd.read_pickle(root + 'cc.pkl')
cc_df = pd.read_pickle(root + 'test-cc-preds.pkl')
functions = cc['functions']
for i, row in cc_df.iterrows():
prot_id = row['proteins']
if prot_id not in preds:
preds[prot_id] = set()
for i in range(len(functions)):
if row['predictions'][i] == 1:
preds[prot_id].add(functions[i])
if prot_id not in annots:
annots[prot_id] = row['gos']
bp = pd.read_pickle(root + 'bp.pkl')
bp_df = pd.read_pickle(root + 'test-bp-preds.pkl')
functions = bp['functions']
for i, row in bp_df.iterrows():
prot_id = row['proteins']
if prot_id not in preds:
preds[prot_id] = set()
for i in range(len(functions)):
if row['predictions'][i] == 1:
preds[prot_id].add(functions[i])
if prot_id not in annots:
annots[prot_id] = row['gos']
# Removing parent classes
for prot_id in preds:
go_set = preds[prot_id]
gos = go_set.copy()
for go_id in gos:
anchestors = get_anchestors(go, go_id)
anchestors.remove(go_id)
go_set -= anchestors
proteins = sorted(list(annots.keys()), key=lambda x: (
x.split('_')[1], x.split('_')[0]))
with open(root + 'test_predictions.tab', 'w') as f:
for prot_id in proteins:
f.write(prot_id)
for go_id in preds[prot_id]:
f.write('\t' + go_id)
f.write('\n')
with open(root + 'test_annotations.tab', 'w') as f:
for prot_id in proteins:
f.write(prot_id)
for go_id in annots[prot_id]:
if go_id in go:
f.write('\t' + go_id)
f.write('\n')
def specific_predictions():
root = 'data/cafa3/'
go = get_gene_ontology()
fw = open(root + 'test_predictions_specific.tab', 'w')
with open(root + 'test_predictions.tab', 'r') as f:
for line in f:
items = line.strip().split('\t')
go_set = set(items[1:])
gos = go_set.copy()
for go_id in gos:
anchestors = get_anchestors(go, go_id)
anchestors.remove(go_id)
go_set -= anchestors
fw.write(items[0])
for go_id in go_set:
fw.write('\t' + go_id)
fw.write('\n')
fw.close()
def merged_annotations():
root = 'data/cafa3/'
preds = {}
with open(root + 'test_predictions.tab', 'r') as f:
for line in f:
items = line.strip().split('\t')
preds[items[0]] = set(items[1:])
fw = open(root + 'test_merged.tab', 'w')
with open(root + 'test_annotations.tab', 'r') as f:
for line in f:
items = line.strip().split('\t')
gos = preds[items[0]] | set(items[1:])
fw.write(items[0])
for go_id in gos:
fw.write('\t' + go_id)
fw.write('\n')
fw.close()
def compute_performance():
root = 'data/cafa3/'
preds = {}
annots = {}
go = get_gene_ontology()
with open(root + 'test_predictions.tab', 'r') as f:
for line in f:
items = line.strip().split('\t')
preds[items[0]] = set(items[1:])
with open(root + 'test_annotations.tab', 'r') as f:
for line in f:
items = line.strip().split('\t')
annots[items[0]] = set()
for go_id in items[1:]:
if go_id in go:
annots[items[0]] |= get_anchestors(go, go_id)
total = 0
p = 0.0
r = 0.0
f = 0.0
for prot, pred_annots in preds.items():
real_annots = annots[prot]
if len(real_annots) == 0:
continue
tp = len(real_annots.intersection(pred_annots))
fp = len(pred_annots - real_annots)
fn = len(real_annots - pred_annots)
if tp == 0 and fp == 0 and fn == 0:
continue
total += 1
if tp != 0:
precision = tp / (1.0 * (tp + fp))
recall = tp / (1.0 * (tp + fn))
p += precision
r += recall
f += 2 * precision * recall / (precision + recall)
print((f / total, p / total, r / total))
def main(*args, **kwargs):
# specific_predictions()
# get_predictions()
# merged_annotations()
# compute_performance()
# get_results('model_seq')
get_data()
# cafa3()
# fasta2tabs()
# cafa2string()
# get_annotations()
# get_sequences()
# sprot2tabs()
if __name__ == '__main__':
main(*sys.argv)