-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathnn_hierarchical_all.py
612 lines (547 loc) · 19.4 KB
/
nn_hierarchical_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
#!/usr/bin/env python
"""
python nn_hierarchical_network.py
"""
import numpy as np
import pandas as pd
import click as ck
from keras.models import Sequential, Model, load_model
from keras.layers import (
Dense, Dropout, Activation, Input,
Flatten, Highway, merge, BatchNormalization)
from keras.layers.embeddings import Embedding
from keras.layers.convolutional import (
Convolution1D, MaxPooling1D)
from keras.optimizers import Adam, RMSprop, Adadelta
from sklearn.metrics import classification_report
from utils import (
get_gene_ontology,
get_go_set,
get_anchestors,
get_parents,
DataGenerator,
FUNC_DICT,
MyCheckpoint,
save_model_weights,
load_model_weights,
get_ipro)
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.preprocessing import sequence
from keras import backend as K
import sys
from collections import deque
import time
import logging
import tensorflow as tf
from sklearn.metrics import roc_curve, auc, matthews_corrcoef
from scipy.spatial import distance
from multiprocessing import Pool
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
K.set_session(sess)
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO)
sys.setrecursionlimit(100000)
DATA_ROOT = 'data/all/'
MAXLEN = 1000
REPLEN = 256
ind = 0
@ck.command()
@ck.option(
'--device',
default='gpu:0',
help='GPU or CPU device id')
@ck.option(
'--org',
default=None,
help='Organism id for filtering test set')
@ck.option('--train', is_flag=True)
def main(device, org, train):
global GO_IDS
GO_IDS = list(FUNC_DICT.values())
global go
go = get_gene_ontology('go.obo')
global ORG
ORG = org
func_df = pd.read_pickle(DATA_ROOT + 'bp.pkl')
global functions
functions = func_df['functions'].values
func_df = pd.read_pickle(DATA_ROOT + 'mf.pkl')
functions = np.concatenate((functions, func_df['functions'].values))
func_df = pd.read_pickle(DATA_ROOT + 'cc.pkl')
functions = np.concatenate((functions, func_df['functions'].values))
global func_set
func_set = set(functions)
global all_functions
all_functions = (
get_go_set(go, GO_IDS[0])
| get_go_set(go, GO_IDS[1])
| get_go_set(go, GO_IDS[2]))
logging.info('Functions: %d' % (len(functions), ))
if ORG is not None:
logging.info('Organism %s' % ORG)
global go_indexes
go_indexes = dict()
for ind, go_id in enumerate(functions):
go_indexes[go_id] = ind
global node_names
node_names = set()
with tf.device('/' + device):
params = {
'fc_output': 1024,
'learning_rate': 0.001,
'embedding_dims': 128,
'embedding_dropout': 0.2,
'filter_length': 128,
'nb_filter': 32,
'pool_length': 64,
'stride': 32
}
model(params, is_train=train)
# for dims in [64, 128, 256, 512]:
# for nb_filter in [16, 32, 64, 128]:
# params['embedding_dims'] = dims
# params['nb_filter'] = nb_filter
# f = model(params, is_train=train)
# print(dims, nb_filter, f)
# performanc_by_interpro()
def load_data(org=None):
df = pd.read_pickle(DATA_ROOT + 'train.pkl')
test_df = pd.read_pickle(DATA_ROOT + 'test.pkl')
# df = pd.concat([df, test_df], ignore_index=True)
n = len(df)
print(n)
index = df.index.values
valid_n = int(n * 0.8)
train_df = df.loc[index[:valid_n]]
valid_df = df.loc[index[valid_n:]]
# test_df = valid_df
if org is not None:
logging.info('Unfiltered test size: %d' % len(test_df))
test_df = test_df[test_df['orgs'] == org]
logging.info('Filtered test size: %d' % len(test_df))
# Filter by type
# org_df = pd.read_pickle('data/eukaryotes.pkl')
# orgs = org_df['orgs']
# test_df = test_df[test_df['orgs'].isin(orgs)]
def reshape(values):
values = np.hstack(values).reshape(
len(values), len(values[0]))
return values
def normalize_minmax(values):
mn = np.min(values)
mx = np.max(values)
if mx - mn != 0.0:
return (values - mn) / (mx - mn)
return values - mn
def get_values(data_frame):
labels = reshape(data_frame['labels'].values)
ngrams = sequence.pad_sequences(
data_frame['ngrams'].values, maxlen=MAXLEN)
ngrams = reshape(ngrams)
rep = reshape(data_frame['embeddings'].values)
data = (ngrams, rep)
return data, labels
train = get_values(train_df)
valid = get_values(valid_df)
test = get_values(test_df)
return train, valid, test, train_df, valid_df, test_df
def get_feature_model(params):
embedding_dims = params['embedding_dims']
max_features = 8001
model = Sequential()
model.add(Embedding(
max_features,
embedding_dims,
input_length=MAXLEN,
dropout=params['embedding_dropout']))
model.add(Convolution1D(
nb_filter=params['nb_filter'],
filter_length=params['filter_length'],
border_mode='valid',
activation='relu',
subsample_length=1))
model.add(MaxPooling1D(
pool_length=params['pool_length'], stride=params['stride']))
model.add(Flatten())
return model
def merge_outputs(outputs, name):
if len(outputs) == 1:
return outputs[0]
return merge(outputs, mode='concat', name=name, concat_axis=1)
def merge_nets(nets, name):
if len(nets) == 1:
return nets[0]
return merge(nets, mode='sum', name=name)
def get_node_name(go_id, unique=False):
name = go_id.split(':')[1]
if not unique:
return name
if name not in node_names:
node_names.add(name)
return name
i = 1
while (name + '_' + str(i)) in node_names:
i += 1
name = name + '_' + str(i)
node_names.add(name)
return name
def get_function_node(name, inputs):
output_name = name + '_out'
# net = Dense(256, name=name, activation='relu')(inputs)
output = Dense(1, name=output_name, activation='sigmoid')(inputs)
return output, output
def get_layers(inputs):
q = deque()
layers = {}
layers[GO_IDS[0]] = {'net': inputs}
layers[GO_IDS[1]] = {'net': inputs}
layers[GO_IDS[2]] = {'net': inputs}
for node_id in go[GO_IDS[0]]['children']:
if node_id in func_set:
q.append((node_id, inputs))
for node_id in go[GO_IDS[1]]['children']:
if node_id in func_set:
q.append((node_id, inputs))
for node_id in go[GO_IDS[2]]['children']:
if node_id in func_set:
q.append((node_id, inputs))
while len(q) > 0:
node_id, net = q.popleft()
parent_nets = [inputs]
# for p_id in get_parents(go, node_id):
# if p_id in func_set:
# parent_nets.append(layers[p_id]['net'])
# if len(parent_nets) > 1:
# name = get_node_name(node_id) + '_parents'
# net = merge(
# parent_nets, mode='concat', concat_axis=1, name=name)
name = get_node_name(node_id)
net, output = get_function_node(name, inputs)
if node_id not in layers:
layers[node_id] = {'net': net, 'output': output}
for n_id in go[node_id]['children']:
if n_id in func_set and n_id not in layers:
ok = True
for p_id in get_parents(go, n_id):
if p_id in func_set and p_id not in layers:
ok = False
if ok:
q.append((n_id, net))
for node_id in functions:
childs = set(go[node_id]['children']).intersection(func_set)
if len(childs) > 0:
outputs = [layers[node_id]['output']]
for ch_id in childs:
outputs.append(layers[ch_id]['output'])
name = get_node_name(node_id) + '_max'
layers[node_id]['output'] = merge(
outputs, mode='max', name=name)
return layers
def get_model(params):
logging.info("Building the model")
inputs = Input(shape=(MAXLEN,), dtype='int32', name='input1')
inputs2 = Input(shape=(REPLEN,), dtype='float32', name='input2')
feature_model = get_feature_model(params)(inputs)
merged = merge(
[feature_model, inputs2], mode='concat',
concat_axis=1, name='merged')
net = Dense(params['fc_output'], activation='relu')(merged)
layers = get_layers(net)
output_models = []
for i in range(len(functions)):
output_models.append(layers[functions[i]]['output'])
net = merge(output_models, mode='concat', concat_axis=1)
# net = Dense(1024, activation='relu')(merged)
# net = Dense(len(functions), activation='sigmoid')(net)
model = Model(input=[inputs, inputs2], output=net)
logging.info('Compiling the model')
optimizer = RMSprop(lr=params['learning_rate'])
model.compile(
optimizer=optimizer,
loss='binary_crossentropy')
logging.info(
'Compilation finished')
return model
def model(params, batch_size=128, nb_epoch=6, is_train=True):
# set parameters:
nb_classes = len(functions)
start_time = time.time()
logging.info("Loading Data")
train, val, test, train_df, valid_df, test_df = load_data()
train_df = pd.concat([train_df, valid_df])
test_gos = test_df['gos'].values
train_data, train_labels = train
val_data, val_labels = val
test_data, test_labels = test
logging.info("Data loaded in %d sec" % (time.time() - start_time))
logging.info("Training data size: %d" % len(train_data[0]))
logging.info("Validation data size: %d" % len(val_data[0]))
logging.info("Test data size: %d" % len(test_data[0]))
model_path = (DATA_ROOT + 'model.h5')
# '-' + str(params['embedding_dims']) +
# '-' + str(params['nb_filter']) + '.h5')
checkpointer = ModelCheckpoint(
filepath=model_path,
verbose=1, save_best_only=True)
earlystopper = EarlyStopping(monitor='val_loss', patience=10, verbose=1)
logging.info('Starting training the model')
train_generator = DataGenerator(batch_size, nb_classes)
train_generator.fit(train_data, train_labels)
valid_generator = DataGenerator(batch_size, nb_classes)
valid_generator.fit(val_data, val_labels)
test_generator = DataGenerator(batch_size, nb_classes)
test_generator.fit(test_data, test_labels)
if is_train:
model = get_model(params)
model.fit_generator(
train_generator,
samples_per_epoch=len(train_data[0]),
nb_epoch=nb_epoch,
validation_data=valid_generator,
nb_val_samples=len(val_data[0]),
max_q_size=batch_size,
callbacks=[checkpointer, earlystopper])
logging.info('Loading best model')
model = load_model(model_path)
# orgs = ['9606', '10090', '10116', '7227', '7955',
# '559292', '3702', '284812', '6239',
# '83333', '83332', '224308', '208964']
# for org in orgs:
# logging.info('Predicting for %s' % (org,))
# train, val, test, train_df, valid_df, test_df = load_data(org=org)
# test_data, test_labels = test
# test_gos = test_df['gos'].values
# test_generator = DataGenerator(batch_size, nb_classes)
# test_generator.fit(test_data, test_labels)
preds = model.predict_generator(
test_generator, val_samples=len(test_data[0]))
logging.info('Computing performance')
f, p, r, t, preds_max = compute_performance(preds, test_labels, test_gos)
roc_auc = compute_roc(preds, test_labels)
mcc = compute_mcc(preds_max, test_labels)
logging.info('Fmax measure: \t %f %f %f %f' % (f, p, r, t))
logging.info('ROC AUC: \t %f ' % (roc_auc, ))
logging.info('MCC: \t %f ' % (mcc, ))
print(('%.3f & %.3f & %.3f & %.3f & %.3f' % (
f, p, r, roc_auc, mcc)))
# return f
# logging.info('Inconsistent predictions: %d' % incon)
# logging.info('Saving the predictions')
proteins = test_df['proteins']
predictions = list()
for i in range(preds_max.shape[0]):
predictions.append(preds_max[i])
df = pd.DataFrame(
{
'proteins': proteins, 'predictions': predictions,
'gos': test_df['gos'], 'labels': test_df['labels']})
df.to_pickle(DATA_ROOT + 'test-' + FUNCTION + '-preds.pkl')
# logging.info('Done in %d sec' % (time.time() - start_time))
# function_centric_performance(functions, preds.T, test_labels.T)
def load_prot_ipro():
proteins = list()
ipros = list()
with open(DATA_ROOT + 'swissprot_ipro.tab') as f:
for line in f:
it = line.strip().split('\t')
if len(it) != 3:
continue
prot = it[1]
iprs = set(it[2].split(';'))
proteins.append(prot)
ipros.append(iprs)
return pd.DataFrame({'proteins': proteins, 'ipros': ipros})
def performanc_by_interpro():
pred_df = pd.read_pickle(DATA_ROOT + 'test-' + FUNCTION + '-preds.pkl')
ipro_df = load_prot_ipro()
df = pred_df.merge(ipro_df, on='proteins', how='left')
ipro = get_ipro()
def reshape(values):
values = np.hstack(values).reshape(
len(values), len(values[0]))
return values
for ipro_id in ipro:
if len(ipro[ipro_id]['parents']) > 0:
continue
labels = list()
predictions = list()
gos = list()
for i, row in df.iterrows():
if not isinstance(row['ipros'], set):
continue
if ipro_id in row['ipros']:
labels.append(row['labels'])
predictions.append(row['predictions'])
gos.append(row['gos'])
pr = 0
rc = 0
total = 0
p_total = 0
for i in range(len(labels)):
tp = np.sum(labels[i] * predictions[i])
fp = np.sum(predictions[i]) - tp
fn = np.sum(labels[i]) - tp
all_gos = set()
for go_id in gos[i]:
if go_id in all_functions:
all_gos |= get_anchestors(go, go_id)
all_gos.discard(GO_ID)
all_gos -= func_set
fn += len(all_gos)
if tp == 0 and fp == 0 and fn == 0:
continue
total += 1
if tp != 0:
p_total += 1
precision = tp / (1.0 * (tp + fp))
recall = tp / (1.0 * (tp + fn))
pr += precision
rc += recall
if total > 0 and p_total > 0:
rc /= total
pr /= p_total
if pr + rc > 0:
f = 2 * pr * rc / (pr + rc)
print(('%s\t%d\t%f\t%f\t%f' % (
ipro_id, len(labels), f, pr, rc)))
def function_centric_performance(functions, preds, labels):
preds = np.round(preds, 2)
for i in range(len(functions)):
f_max = 0
p_max = 0
r_max = 0
x = list()
y = list()
for t in range(1, 100):
threshold = t / 100.0
predictions = (preds[i, :] > threshold).astype(np.int32)
tp = np.sum(predictions * labels[i, :])
fp = np.sum(predictions) - tp
fn = np.sum(labels[i, :]) - tp
sn = tp / (1.0 * np.sum(labels[i, :]))
sp = np.sum((predictions ^ 1) * (labels[i, :] ^ 1))
sp /= 1.0 * np.sum(labels[i, :] ^ 1)
fpr = 1 - sp
x.append(fpr)
y.append(sn)
precision = tp / (1.0 * (tp + fp))
recall = tp / (1.0 * (tp + fn))
f = 2 * precision * recall / (precision + recall)
if f_max < f:
f_max = f
p_max = precision
r_max = recall
num_prots = np.sum(labels[i, :])
roc_auc = auc(x, y)
print(('%s %f %f %f %d %f' % (
functions[i], f_max, p_max, r_max, num_prots, roc_auc)))
def compute_roc(preds, labels):
# Compute ROC curve and ROC area for each class
fpr, tpr, _ = roc_curve(labels.flatten(), preds.flatten())
roc_auc = auc(fpr, tpr)
return roc_auc
def compute_mcc(preds, labels):
# Compute ROC curve and ROC area for each class
mcc = matthews_corrcoef(labels.flatten(), preds.flatten())
return mcc
def compute_performance(preds, labels, gos):
preds = np.round(preds, 2)
f_max = 0
p_max = 0
r_max = 0
t_max = 0
for t in range(1, 100):
threshold = t / 100.0
predictions = (preds > threshold).astype(np.int32)
total = 0
f = 0.0
p = 0.0
r = 0.0
p_total = 0
for i in range(labels.shape[0]):
tp = np.sum(predictions[i, :] * labels[i, :])
fp = np.sum(predictions[i, :]) - tp
fn = np.sum(labels[i, :]) - tp
all_gos = set()
for go_id in gos[i]:
if go_id in all_functions:
all_gos |= get_anchestors(go, go_id)
for g_id in GO_IDS:
all_gos.discard(g_id)
all_gos -= func_set
fn += len(all_gos)
if tp == 0 and fp == 0 and fn == 0:
continue
total += 1
if tp != 0:
p_total += 1
precision = tp / (1.0 * (tp + fp))
recall = tp / (1.0 * (tp + fn))
p += precision
r += recall
if p_total == 0:
continue
r /= total
p /= p_total
if p + r > 0:
f = 2 * p * r / (p + r)
if f_max < f:
f_max = f
p_max = p
r_max = r
t_max = threshold
predictions_max = predictions
return f_max, p_max, r_max, t_max, predictions_max
def get_gos(pred):
mdist = 1.0
mgos = None
for i in range(len(labels_gos)):
labels, gos = labels_gos[i]
dist = distance.cosine(pred, labels)
if mdist > dist:
mdist = dist
mgos = gos
return mgos
def compute_similarity_performance(train_df, test_df, preds):
logging.info("Computing similarity performance")
logging.info("Training data size %d" % len(train_df))
train_labels = train_df['labels'].values
train_gos = train_df['gos'].values
global labels_gos
labels_gos = list(zip(train_labels, train_gos))
p = Pool(64)
pred_gos = p.map(get_gos, preds)
total = 0
p = 0.0
r = 0.0
f = 0.0
test_gos = test_df['gos'].values
for gos, tgos in zip(pred_gos, test_gos):
preds = set()
test = set()
for go_id in gos:
if go_id in all_functions:
preds |= get_anchestors(go, go_id)
for go_id in tgos:
if go_id in all_functions:
test |= get_anchestors(go, go_id)
tp = len(preds.intersection(test))
fp = len(preds - test)
fn = len(test - preds)
if tp == 0 and fp == 0 and fn == 0:
continue
total += 1
if tp != 0:
precision = tp / (1.0 * (tp + fp))
recall = tp / (1.0 * (tp + fn))
p += precision
r += recall
f += 2 * precision * recall / (precision + recall)
return f / total, p / total, r / total
def print_report(report, go_id):
with open(DATA_ROOT + 'reports.txt', 'a') as f:
f.write('Classification report for ' + go_id + '\n')
f.write(report + '\n')
if __name__ == '__main__':
main()