-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathpredict.py
196 lines (171 loc) · 5.45 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python
"""
python predict.py
"""
import numpy as np
import pandas as pd
import click as ck
from keras.models import load_model
from keras.optimizers import RMSprop
from utils import (
get_gene_ontology,
get_go_set,
get_anchestors,
get_parents,
DataGenerator,
FUNC_DICT,
MyCheckpoint,
save_model_weights,
load_model_weights,
filter_specific)
from keras.preprocessing import sequence
from keras import backend as K
import sys
import time
import datetime
import logging
import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
K.set_session(sess)
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO)
sys.setrecursionlimit(100000)
DATA_ROOT = 'data/eshark/'
MAXLEN = 1000
REPLEN = 256
ind = 0
@ck.command()
@ck.option(
'--function',
default='mf',
help='Ontology id (mf, bp, cc)')
@ck.option(
'--device',
default='gpu:0',
help='GPU or CPU device id')
@ck.option(
'--model-name',
default='model',
help='Name of the model')
def main(function, device, model_name):
global FUNCTION
FUNCTION = function
global GO_ID
GO_ID = FUNC_DICT[FUNCTION]
global go
go = get_gene_ontology('go.obo')
func_df = pd.read_pickle(DATA_ROOT + FUNCTION + '.pkl')
global functions
functions = func_df['functions'].values
global func_set
func_set = set(functions)
global all_functions
all_functions = get_go_set(go, GO_ID)
logging.info(len(functions))
global go_indexes
go_indexes = dict()
for ind, go_id in enumerate(functions):
go_indexes[go_id] = ind
# with tf.device('/' + device):
# model(model_name)
# add_gos()
to_csv()
def load_data():
df = pd.read_pickle(DATA_ROOT + 'targets.pkl')
def reshape(values):
values = np.hstack(values).reshape(
len(values), len(values[0]))
return values
def get_values(data_frame):
ngrams = sequence.pad_sequences(
data_frame['ngrams'].values, maxlen=MAXLEN)
ngrams = reshape(ngrams)
embeddings = reshape(data_frame['embeddings'].values)
return (ngrams, embeddings)
data = get_values(df)
return data, df['targets'].values
def model(model_name):
# set parameters:
batch_size = 128
nb_classes = len(functions)
start_time = time.time()
logging.info("Loading Data")
data, targets = load_data()
data_generator = DataGenerator(batch_size, nb_classes)
data_generator.fit(data, None)
logging.info("Data loaded in %d sec" % (time.time() - start_time))
logging.info("Data size: %d" % len(data[0]))
logging.info('Loading the model')
model = load_model(
DATA_ROOT + model_name + '_' + FUNCTION + '.h5')
logging.info('Predicting')
preds = model.predict_generator(
data_generator, val_samples=len(data[0]))
# incon = 0
# for i in xrange(len(data)):
# for j in xrange(len(functions)):
# anchestors = get_anchestors(go, functions[j])
# for p_id in anchestors:
# if (p_id not in [GO_ID, functions[j]] and
# preds[i, go_indexes[p_id]] < preds[i, j]):
# incon += 1
# preds[i, go_indexes[p_id]] = preds[i, j]
# logging.info('Inconsistent predictions: %d' % incon)
predictions = list()
for i in range(len(targets)):
predictions.append(preds[i])
df = pd.DataFrame({
'targets': targets,
'predictions': predictions})
print((len(df)))
df.to_pickle(DATA_ROOT + model_name + '_preds_' + FUNCTION + '.pkl')
logging.info('Done in %d sec' % (time.time() - start_time))
def add_gos():
df = pd.read_pickle(DATA_ROOT + 'model_preds_' + FUNCTION + '.pkl')
gos = list()
threshold = 0.2
for i, row in df.iterrows():
preds = row['predictions']
go_ids = list()
for i in range(len(preds)):
if preds[i] >= threshold:
go_ids.append(functions[i])
gos.append(filter_specific(go, go_ids))
df['gos_' + FUNCTION] = gos
print(df)
df.to_pickle(DATA_ROOT + 'predictions_' + FUNCTION + '.pkl')
def to_csv():
bp_df = pd.read_pickle(DATA_ROOT + 'predictions_bp.pkl').drop(
'predictions', axis=1)
mf_df = pd.read_pickle(DATA_ROOT + 'predictions_mf.pkl').drop(
'predictions', axis=1)
cc_df = pd.read_pickle(DATA_ROOT + 'predictions_cc.pkl').drop(
'predictions', axis=1)
df = bp_df.merge(mf_df, on='targets').merge(cc_df, on='targets')
gos = list()
go_names = list()
for i, row in df.iterrows():
go_ids = list()
go_nms = list()
for go_id in row['gos_bp']:
go_ids.append('P:' + go_id)
go_nms.append('P:' + go[go_id]['name'])
for go_id in row['gos_mf']:
go_ids.append('F:' + go_id)
go_nms.append('F:' + go[go_id]['name'])
for go_id in row['gos_cc']:
go_ids.append('C:' + go_id)
go_nms.append('C:' + go[go_id]['name'])
gos.append(go_ids)
go_names.append(go_nms)
df = pd.DataFrame({
'SeqName': df['targets'], 'GO_IDS': gos, 'GO_NAMES': go_names})
print(df)
dt = datetime.datetime.today().strftime('%Y%m%d')
df.to_csv(
DATA_ROOT + 'deepgo_%s.tsv' % (dt,),
sep='\t', index=False, header=True,
columns=['SeqName', 'GO_IDS', 'GO_NAMES'])
if __name__ == '__main__':
main()