-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathpyslinger.py
274 lines (249 loc) · 10.9 KB
/
pyslinger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/env python3
# Python IR transmitter
# Requires pigpio library
# Supports NEC, RC-5 and raw IR.
# Danijel Tudek, Aug 2016
import ctypes
import time
# This is the struct required by pigpio library.
# We store the individual pulses and their duration here. (In an array of these structs.)
class Pulses_struct(ctypes.Structure):
_fields_ = [("gpioOn", ctypes.c_uint32),
("gpioOff", ctypes.c_uint32),
("usDelay", ctypes.c_uint32)]
# Since both NEC and RC-5 protocols use the same method for generating waveform,
# it can be put in a separate class and called from both protocol's classes.
class Wave_generator():
def __init__(self,protocol):
self.protocol = protocol
MAX_PULSES = 12000 # from pigpio.h
Pulses_array = Pulses_struct * MAX_PULSES
self.pulses = Pulses_array()
self.pulse_count = 0
def add_pulse(self, gpioOn, gpioOff, usDelay):
self.pulses[self.pulse_count].gpioOn = gpioOn
self.pulses[self.pulse_count].gpioOff = gpioOff
self.pulses[self.pulse_count].usDelay = usDelay
self.pulse_count += 1
# Pull the specified output pin low
def zero(self, duration):
self.add_pulse(0, 1 << self.protocol.master.gpio_pin, duration)
# Protocol-agnostic square wave generator
def one(self, duration):
period_time = 1000000.0 / self.protocol.frequency
on_duration = int(round(period_time * self.protocol.duty_cycle))
off_duration = int(round(period_time * (1.0 - self.protocol.duty_cycle)))
total_periods = int(round(duration/period_time))
total_pulses = total_periods * 2
# Generate square wave on the specified output pin
for i in range(total_pulses):
if i % 2 == 0:
self.add_pulse(1 << self.protocol.master.gpio_pin, 0, on_duration)
else:
self.add_pulse(0, 1 << self.protocol.master.gpio_pin, off_duration)
# NEC protocol class
class NEC():
def __init__(self,
master,
frequency=38000,
duty_cycle=0.33,
leading_pulse_duration=9000,
leading_gap_duration=4500,
one_pulse_duration = 562,
one_gap_duration = 1686,
zero_pulse_duration = 562,
zero_gap_duration = 562,
trailing_pulse = 0):
self.master = master
self.wave_generator = Wave_generator(self)
self.frequency = frequency # in Hz, 38000 per specification
self.duty_cycle = duty_cycle # duty cycle of high state pulse
# Durations of high pulse and low "gap".
# The NEC protocol defines pulse and gap lengths, but we can never expect
# that any given TV will follow the protocol specification.
self.leading_pulse_duration = leading_pulse_duration # in microseconds, 9000 per specification
self.leading_gap_duration = leading_gap_duration # in microseconds, 4500 per specification
self.one_pulse_duration = one_pulse_duration # in microseconds, 562 per specification
self.one_gap_duration = one_gap_duration # in microseconds, 1686 per specification
self.zero_pulse_duration = zero_pulse_duration # in microseconds, 562 per specification
self.zero_gap_duration = zero_gap_duration # in microseconds, 562 per specification
self.trailing_pulse = trailing_pulse # trailing 562 microseconds pulse, some remotes send it, some don't
print("NEC protocol initialized")
# Send AGC burst before transmission
def send_agc(self):
print("Sending AGC burst")
self.wave_generator.one(self.leading_pulse_duration)
self.wave_generator.zero(self.leading_gap_duration)
# Trailing pulse is just a burst with the duration of standard pulse.
def send_trailing_pulse(self):
print("Sending trailing pulse")
self.wave_generator.one(self.one_pulse_duration)
# This function is processing IR code. Leaves room for possible manipulation
# of the code before processing it.
def process_code(self, ircode):
if (self.leading_pulse_duration > 0) or (self.leading_gap_duration > 0):
self.send_agc()
for i in ircode:
if i == "0":
self.zero()
elif i == "1":
self.one()
else:
print("ERROR! Non-binary digit!")
return 1
if self.trailing_pulse == 1:
self.send_trailing_pulse()
return 0
# Generate zero or one in NEC protocol
# Zero is represented by a pulse and a gap of the same length
def zero(self):
self.wave_generator.one(self.zero_pulse_duration)
self.wave_generator.zero(self.zero_gap_duration)
# One is represented by a pulse and a gap three times longer than the pulse
def one(self):
self.wave_generator.one(self.one_pulse_duration)
self.wave_generator.zero(self.one_gap_duration)
# RC-5 protocol class
# Note: start bits are not implemented here due to inconsistency between manufacturers.
# Simply provide them with the rest of the IR code.
class RC5():
def __init__(self,
master,
frequency=36000,
duty_cycle=0.33,
one_duration=889,
zero_duration=889):
self.master = master
self.wave_generator = Wave_generator(self)
self.frequency = frequency # in Hz, 36000 per specification
self.duty_cycle = duty_cycle # duty cycle of high state pulse
# Durations of high pulse and low "gap".
# Technically, they both should be the same in the RC-5 protocol, but we can never expect
# that any given TV will follow the protocol specification.
self.one_duration = one_duration # in microseconds, 889 per specification
self.zero_duration = zero_duration # in microseconds, 889 per specification
print("RC-5 protocol initialized")
# This function is processing IR code. Leaves room for possible manipulation
# of the code before processing it.
def process_code(self, ircode):
for i in ircode:
if i == "0":
self.zero()
elif i == "1":
self.one()
else:
print("ERROR! Non-binary digit!")
return 1
return 0
# Generate zero or one in RC-5 protocol
# Zero is represented by pulse-then-low signal
def zero(self):
self.wave_generator.one(self.zero_duration)
self.wave_generator.zero(self.zero_duration)
# One is represented by low-then-pulse signal
def one(self):
self.wave_generator.zero(self.one_duration)
self.wave_generator.one(self.one_duration)
# RAW IR ones and zeroes. Specify length for one and zero and simply bitbang the GPIO.
# The default values are valid for one tested remote which didn't fit in NEC or RC-5 specifications.
# It can also be used in case you don't want to bother with deciphering raw bytes from IR receiver:
# i.e. instead of trying to figure out the protocol, simply define bit lengths and send them all here.
class RAW():
def __init__(self,
master,
frequency=36000,
duty_cycle=0.33,
one_duration=520,
zero_duration=520):
self.master = master
self.wave_generator = Wave_generator(self)
self.frequency = frequency # in Hz
self.duty_cycle = duty_cycle # duty cycle of high state pulse
self.one_duration = one_duration # in microseconds
self.zero_duration = zero_duration # in microseconds
def process_code(self, ircode):
for i in ircode:
if i == "0":
self.zero()
elif i == "1":
self.one()
else:
print("ERROR! Non-binary digit!")
return 1
return 0
# Generate raw zero or one.
# Zero is represented by low (no signal) for a specified duration.
def zero(self):
self.wave_generator.zero(self.zero_duration)
# One is represented by pulse for a specified duration.
def one(self):
self.wave_generator.one(self.one_duration)
class IR():
def __init__(self, gpio_pin, protocol, protocol_config):
print("Starting IR")
print("Loading libpigpio.so")
self.pigpio = ctypes.CDLL('libpigpio.so')
print("Initializing pigpio")
PI_OUTPUT = 1 # from pigpio.h
self.pigpio.gpioInitialise()
self.gpio_pin = gpio_pin
print("Configuring pin %d as output" % self.gpio_pin)
self.pigpio.gpioSetMode(self.gpio_pin, PI_OUTPUT) # pin 17 is used in LIRC by default
print("Initializing protocol")
if protocol == "NEC":
self.protocol = NEC(self, **protocol_config)
elif protocol == "RC-5":
self.protocol = RC5(self, **protocol_config)
elif protocol == "RAW":
self.protocol = RAW(self, **protocol_config)
else:
print("Protocol not specified! Exiting...")
return 1
print("IR ready")
# send_code takes care of sending the processed IR code to pigpio.
# IR code itself is processed and converted to pigpio structs by protocol's classes.
def send_code(self, ircode):
print("Processing IR code: %s" % ircode)
code = self.protocol.process_code(ircode)
if code != 0:
print("Error in processing IR code!")
return 1
clear = self.pigpio.gpioWaveClear()
if clear != 0:
print("Error in clearing wave!")
return 1
pulses = self.pigpio.gpioWaveAddGeneric(self.protocol.wave_generator.pulse_count, self.protocol.wave_generator.pulses)
if pulses < 0:
print("Error in adding wave!")
return 1
wave_id = self.pigpio.gpioWaveCreate()
# Unlike the C implementation, in Python the wave_id seems to always be 0.
if wave_id >= 0:
print("Sending wave...")
result = self.pigpio.gpioWaveTxSend(wave_id, 0)
if result >= 0:
print("Success! (result: %d)" % result)
else:
print("Error! (result: %d)" % result)
return 1
else:
print("Error creating wave: %d" % wave_id)
return 1
while self.pigpio.gpioWaveTxBusy():
time.sleep(0.1)
print("Deleting wave")
self.pigpio.gpioWaveDelete(wave_id)
print("Terminating pigpio")
self.pigpio.gpioTerminate()
# Simply define the GPIO pin, protocol (NEC, RC-5 or RAW) and
# override the protocol defaults with the dictionary if required.
# Provide the IR code to the send_code() method.
# An example is given below.
if __name__ == "__main__":
protocol = "RC-5"
gpio_pin = 17
protocol_config = dict(one_duration = 820,
zero_duration = 820)
ir = IR(gpio_pin, protocol, protocol_config)
ir.send_code("11000000001100")
print("Exiting IR")