forked from tensorforce/tensorforce
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
258 lines (233 loc) · 9.98 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright 2020 Tensorforce Team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import argparse
import importlib
import json
import os
import matplotlib
import numpy as np
from tensorforce import Environment, Runner
matplotlib.use('Agg')
import matplotlib.pyplot as plt
def main():
parser = argparse.ArgumentParser(description='Tensorforce runner')
# Agent arguments
parser.add_argument(
'-a', '--agent', type=str, default=None,
help='Agent (name, configuration JSON file, or library module)'
)
parser.add_argument(
'-c', '--checkpoints', type=str, default=None,
help='TensorFlow checkpoints directory, plus optional comma-separated filename'
)
parser.add_argument(
'-s', '--summaries', type=str, default=None,
help='TensorBoard summaries directory, plus optional comma-separated filename'
)
parser.add_argument(
'--recordings', type=str, default=None, help='Traces recordings directory'
)
# Environment arguments
parser.add_argument(
'-e', '--environment', type=str, default=None,
help='Environment (name, configuration JSON file, or library module)'
)
parser.add_argument(
'-l', '--level', type=str, default=None,
help='Level or game id, like `CartPole-v1`, if supported'
)
parser.add_argument(
'-m', '--max-episode-timesteps', type=int, default=None,
help='Maximum number of timesteps per episode'
)
parser.add_argument(
'--visualize', action='store_true',
help='Visualize agent--environment interaction, if supported'
)
parser.add_argument(
'--visualize-directory', type=str, default=None,
help='Directory to store videos of agent--environment interaction, if supported'
)
parser.add_argument(
'--import-modules', type=str, default=None,
help='Import comma-separated modules required for environment'
)
# Parallel execution arguments
parser.add_argument(
'--num-parallel', type=int, default=None,
help='Number of environment instances to execute in parallel'
)
parser.add_argument(
'--batch-agent-calls', action='store_true',
help='Batch agent calls for parallel environment execution'
)
parser.add_argument(
'--sync-timesteps', action='store_true',
help='Synchronize parallel environment execution on timestep-level'
)
parser.add_argument(
'--sync-episodes', action='store_true',
help='Synchronize parallel environment execution on episode-level'
)
parser.add_argument(
'--remote', type=str, choices=('multiprocessing', 'socket-client', 'socket-server'),
default=None, help='Communication mode for remote environment execution of parallelized'
'environment execution'
)
parser.add_argument(
'--blocking', action='store_true', help='Remote environments should be blocking'
)
parser.add_argument(
'--host', type=str, default=None,
help='Socket server hostname(s) or IP address(es), single value or comma-separated list'
)
parser.add_argument(
'--port', type=str, default=None,
help='Socket server port(s), single value or comma-separated list, increasing sequence if'
'single host and port given'
)
# Runner arguments
parser.add_argument(
'-v', '--evaluation', action='store_true',
help='Run environment (last if multiple) in evaluation mode'
)
parser.add_argument('-n', '--episodes', type=int, default=None, help='Number of episodes')
parser.add_argument('-t', '--timesteps', type=int, default=None, help='Number of timesteps')
parser.add_argument('-u', '--updates', type=int, default=None, help='Number of agent updates')
parser.add_argument(
'--mean-horizon', type=int, default=1,
help='Number of episodes progress bar values and evaluation score are averaged over'
)
parser.add_argument(
'--save-best-agent', type=str, default=None,
help='Directory to save the best version of the agent according to the evaluation score'
)
# Logging arguments
parser.add_argument('-r', '--repeat', type=int, default=1, help='Number of repetitions')
parser.add_argument(
'--path', type=str, default=None,
help='Logging path, directory plus filename without extension'
)
parser.add_argument('--seaborn', action='store_true', help='Use seaborn')
args = parser.parse_args()
if args.import_modules is not None:
for module in args.import_modules.split(','):
importlib.import_module(name=module)
if args.path is None:
callback = None
else:
assert os.path.splitext(args.path)[1] == ''
assert args.episodes is not None and args.visualize is not None
rewards = [list() for _ in range(args.episodes)]
timesteps = [list() for _ in range(args.episodes)]
seconds = [list() for _ in range(args.episodes)]
agent_seconds = [list() for _ in range(args.episodes)]
def callback(r, p):
rewards[r.episodes - 1].append(float(r.episode_returns[-1]))
timesteps[r.episodes - 1].append(int(r.episode_timesteps[-1]))
seconds[r.episodes - 1].append(float(r.episode_seconds[-1]))
agent_seconds[r.episodes - 1].append(float(r.episode_agent_seconds[-1]))
return True
if args.environment is None:
environment = None
else:
environment = dict(environment=args.environment)
if args.level is not None:
environment['level'] = args.level
if args.visualize:
environment['visualize'] = True
if args.visualize_directory is not None:
environment['visualize_directory'] = args.visualize_directory
if args.host is not None and ',' in args.host:
args.host = args.host.split(',')
if args.port is not None and ',' in args.port:
args.port = [int(x) for x in args.port.split(',')]
elif args.port is not None:
args.port = int(args.port)
if args.remote == 'socket-server':
Environment.create(
environment=environment, max_episode_timesteps=args.max_episode_timesteps,
remote=args.remote, port=args.port
)
return
if args.agent is None:
assert args.saver is None and args.summarizer is None and args.recorder is None
agent = None
else:
agent = dict(agent=args.agent)
if args.checkpoints is not None:
assert 'saver' not in agent
if ',' in args.checkpoints:
directory, filename = args.checkpoints.split(',')
agent['saver'] = dict(directory=directory, filename=filename)
else:
agent['saver'] = args.checkpoints
if args.summaries is not None:
assert 'summarizer' not in agent
if ',' in args.summaries:
directory, filename = args.summaries.split(',')
agent['summarizer'] = dict(directory=directory, filename=filename)
else:
agent['summarizer'] = args.summaries
if args.recordings is not None:
assert 'recorder' not in agent
agent['recorder'] = args.recordings
for _ in range(args.repeat):
runner = Runner(
agent=agent, environment=environment, max_episode_timesteps=args.max_episode_timesteps,
evaluation=args.evaluation, num_parallel=args.num_parallel, remote=args.remote,
blocking=args.blocking, host=args.host, port=args.port
)
runner.run(
num_episodes=args.episodes, num_timesteps=args.timesteps, num_updates=args.updates,
batch_agent_calls=args.batch_agent_calls, sync_timesteps=args.sync_timesteps,
sync_episodes=args.sync_episodes, callback=callback, mean_horizon=args.mean_horizon,
save_best_agent=args.save_best_agent
)
runner.close()
if args.path is not None:
directory = os.path.split(args.path)[0]
if directory != '' and not os.path.isdir(directory):
os.makedirs(directory, exist_ok=True)
with open(args.path + '.json', 'w') as filehandle:
filehandle.write(
json.dumps(dict(
rewards=rewards, timesteps=timesteps, seconds=seconds,
agent_seconds=agent_seconds
))
)
if args.seaborn:
import seaborn as sns
sns.set()
xs = np.arange(len(rewards))
figure, axis1 = plt.subplots()
axis1.set_xlabel('episodes')
axis2 = axis1.twinx()
min_timesteps = np.amin(timesteps, axis=1)
max_timesteps = np.amax(timesteps, axis=1)
median_timesteps = np.median(timesteps, axis=1)
axis2.plot(xs, median_timesteps, color='blue', linewidth=2.0)
axis2.fill_between(xs, min_timesteps, max_timesteps, color='blue', alpha=0.4)
axis2.set_ylabel('episode length', color='blue')
min_rewards = np.amin(rewards, axis=1)
max_rewards = np.amax(rewards, axis=1)
median_rewards = np.median(rewards, axis=1)
axis1.plot(xs, median_rewards, color='green', linewidth=2.0)
axis1.fill_between(xs, min_rewards, max_rewards, color='green', alpha=0.4)
axis1.set_ylabel('episode return', color='green')
figure.tight_layout()
plt.savefig(fname=(args.path + '.png'))
if __name__ == '__main__':
main()