forked from zxc123cc/acl23doc2dial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_retrieval.py
469 lines (376 loc) · 14.1 KB
/
train_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# coding:utf-8
import sys
sys.path.append('./retrieval_src')
import os
import json
import faiss
import torch
import warnings
import numpy as np
from tqdm import tqdm
from torch.utils.data import DataLoader
from modelscope.msdatasets import MsDataset
from transformers import AdamW, get_scheduler
from modelscope.utils.logger import get_logger
from modelscope.utils.constant import DownloadMode, ModeKeys
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
from retrieval_src.tricks.opt import Lookahead
from retrieval_src.config_retrieval import Config
from retrieval_src.retrieval_preprocessor import DocumentGroundedDialogRetrievalPreprocessor
from retrieval_src.trainer import DocumentGroundedDialogRetrievalTrainer
from retrieval_src.tricks.adv import FGM
from retrieval_src.tricks.ema import EMA
user_args = Config()
logger = get_logger()
warnings.filterwarnings('ignore')
import os
import random
import numpy as np
import torch
def seed_everything(seed=None):
max_seed_value = np.iinfo(np.uint32).max
min_seed_value = np.iinfo(np.uint32).min
if (seed is None) or not (min_seed_value <= seed <= max_seed_value):
seed = random.randint(np.iinfo(np.uint32).min, np.iinfo(np.uint32).max)
# print(f"Global seed set to {seed}")
os.environ["PYTHONHASHSEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
return seed
seed_everything(user_args.seed)
def collate(batch):
query = [item['query'] for item in batch]
positive = [item['positive'] for item in batch]
negative = [item['negative'] for item in batch]
return query, positive, negative
def prepare_optimizer(model, lr, weight_decay, eps):
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [{
'params': [
p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
'weight_decay':
weight_decay,
}, {
'params': [
p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
'weight_decay':
0.0,
}]
optimizer = AdamW(optimizer_grouped_parameters, lr=lr, eps=eps)
# optimizer = Lookahead(optimizer, 0.5, 5)
return optimizer
def prepare_scheduler(optimizer, epochs, steps_per_epoch, warmup_rate):
total_steps = epochs * steps_per_epoch
warmup_steps = int(total_steps * warmup_rate)
scheduler = get_scheduler(
name='linear',
optimizer=optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=total_steps)
# scheduler = CosineAnnealingWarmRestarts(optimizer, total_steps // user_args.total_epoches * 1, 1, eta_min=5e-6, last_epoch=-1)
return scheduler
def train(
trainer,
return_type='mean_pooling',
norm=False,
total_epoches=20,
batch_size=128,
per_gpu_batch_size=32,
accumulation_steps=1,
clip_grad_norm=1.0,
learning_rate=2e-5,
warmup_ratio=0.1,
weight_decay=0.1,
eps=1e-06,
loss_log_freq=100,
ema=False,
adv=False,
adv_eps=1.0
):
"""
Fine-tuning trainsets
"""
# obtain train loader
train_loader = DataLoader(
dataset=trainer.train_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate,
num_workers=0
)
optimizer = prepare_optimizer(trainer.model.model,
learning_rate,
weight_decay, eps)
steps_per_epoch = len(train_loader) // accumulation_steps
scheduler = prepare_scheduler(optimizer, total_epoches,
steps_per_epoch, warmup_ratio)
if ema:
ema = EMA(trainer.model.parameters(), decay=0.999)
if adv:
fgm = FGM(trainer.model, eps=adv_eps)
"""
saving pre and aft batch
"""
train_iterator = tqdm(train_loader, total=len(train_loader),
desc=f'Preparing pre and aft batch')
pre_inputs, aft_inputs = [], []
all_inputs = []
for index, payload in enumerate(train_iterator):
all_inputs.append(payload)
for i in range(len(all_inputs)):
if i == 0:
pre_inputs.append(None)
elif i == len(all_inputs) - 1:
aft_inputs.append(None)
else:
pre_query, pre_positive, pre_negative = all_inputs[i - 1]
aft_query, aft_positive, aft_negative = all_inputs[i + 1]
pre_input = preprocessor(
{
'query': pre_query,
'positive': pre_query,
'negative': pre_negative
},
invoke_mode=ModeKeys.TRAIN
)
aft_input = preprocessor(
{
'query': aft_query,
'positive': aft_query,
'negative': aft_negative
},
invoke_mode=ModeKeys.TRAIN
)
pre_inputs.append(pre_input)
aft_inputs.append(aft_input)
pre_inputs.append(None)
aft_inputs.append(None)
aft_inputs = [None for i in range(len(pre_inputs))]
global_step = 0
best_score = 0.0
for epoch in range(total_epoches):
trainer.model.model.train()
losses = []
train_iterator = tqdm(train_loader, total=len(train_loader),
desc=f'Training epoch : {epoch + 1}')
for index, payload in enumerate(train_iterator):
global_step += 1
if user_args.debug and global_step == 50:
_ = evaluate(trainer, per_gpu_batch_size=per_gpu_batch_size)
query, positive, negative = payload
print('query: ',len(query))
print('positive: ',len(positive))
print('negative: ',len(negative))
processed = preprocessor(
{
'query': query,
'positive': positive,
'negative': negative
},
invoke_mode=ModeKeys.TRAIN
)
loss, logits = trainer.model(
input=processed,
pre_input=pre_inputs[index],
aft_input=aft_inputs[index],
norm=norm,
return_type=return_type,
training=True
)
if accumulation_steps > 1:
loss = loss / accumulation_steps
loss.backward()
if adv:
fgm.attack()
adv_loss, _ = trainer.model(
processed,
norm=norm,
return_type=return_type
)
if accumulation_steps > 1:
adv_loss = adv_loss / accumulation_steps
adv_loss.backward()
fgm.restore()
train_iterator.set_postfix(loss=loss.item(), global_step=global_step)
if (index + 1) % accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(trainer.model.parameters(), clip_grad_norm)
optimizer.step()
if ema:
ema.update(trainer.model.parameters())
scheduler.step()
optimizer.zero_grad()
losses.append(loss.item())
if (index + 1) % loss_log_freq == 0:
logger.info(
f'\n>>> batch: {batch_size * index} \t loss: {sum(losses) / len(losses)}'
)
losses = []
if losses:
logger.info(
f'\nEpoch: {epoch + 1} \t batch: last \t loss: {sum(losses) / len(losses)}'
)
if ema:
ema.store(trainer.model.parameters())
ema.copy_to(trainer.model.parameters())
meters = evaluate(trainer, per_gpu_batch_size=per_gpu_batch_size, top_k=user_args.top_k)
# total_score = sum([x for x in meters.values()])
# total_score = meters[f'R@{user_args.topk}']
# if total_score >= best_score:
# best_score = total_score
# model_path = os.path.join(trainer.model.model_dir,
# 'finetuned_model.bin')
# state_dict = trainer.model.model.state_dict()
# torch.save(state_dict, model_path)
model_path = os.path.join('model_storage/retrieval_storage', 'finetuned_model.bin')
state_dict = trainer.model.model.state_dict()
torch.save(state_dict, model_path)
if ema:
ema.restore(trainer.model.parameters())
def measure_result(result_dict):
recall_k = [1, 10, 20, 30, 40]
meters = {f'R@{k}': [] for k in recall_k}
for output, target in zip(result_dict['outputs'], result_dict['targets']):
for k in recall_k:
if target in output[:k]:
meters[f'R@{k}'].append(1)
else:
meters[f'R@{k}'].append(0)
for k, v in meters.items():
meters[k] = sum(v) / len(v)
return meters
def evaluate(
trainer,
return_type='mean_pooling',
norm=False,
top_k=20,
per_gpu_batch_size=32,
checkpoint_path=None
):
"""
Evaluate test dataset
"""
if checkpoint_path is not None:
state_dict = torch.load(checkpoint_path)
trainer.model.model.load_state_dict(state_dict)
valid_loader = DataLoader(
dataset=trainer.eval_dataset,
batch_size=per_gpu_batch_size,
collate_fn=collate,
num_workers=16
)
trainer.model.model.eval()
valid_iterator = tqdm(valid_loader, total=len(valid_loader),
desc='Validation')
with torch.no_grad():
all_ctx_vector = []
for mini_batch in tqdm(
range(0, len(all_passages), per_gpu_batch_size)
):
context = all_passages[mini_batch: mini_batch + per_gpu_batch_size]
processed = preprocessor(
{'context': context},
invoke_mode=ModeKeys.INFERENCE,
input_type='context'
)
sub_ctx_vector = trainer.model.encode_context(
processed,
return_type=return_type,
norm=norm
).detach().cpu().numpy()
all_ctx_vector.append(sub_ctx_vector)
all_ctx_vector = np.concatenate(all_ctx_vector, axis=0)
all_ctx_vector = np.array(all_ctx_vector).astype('float32')
faiss_index = faiss.IndexFlatIP(all_ctx_vector.shape[-1])
faiss_index.add(all_ctx_vector)
results = {'outputs': [], 'targets': []}
for index, payload in enumerate(valid_iterator):
query, positive, negative = payload
processed = preprocessor(
{'query': query},
invoke_mode=ModeKeys.INFERENCE
)
# mean pooling, cls, pooled output
query_vector = trainer.model.encode_query(
processed,
return_type=return_type,
norm=norm
).detach().cpu().numpy().astype('float32')
D, Index = faiss_index.search(query_vector, top_k)
results['outputs'] += [
[all_passages[x] for x in retrieved_ids] for retrieved_ids in Index.tolist()
]
results['targets'] += positive
meters = measure_result(results)
result_path = os.path.join(trainer.model.model_dir,
'evaluate_result.json')
with open(result_path, 'w', encoding='utf-8') as f:
json.dump(results, f, ensure_ascii=False, indent=4)
trainer.model.model.train()
logger.info(meters)
return meters
fr_train_dataset = MsDataset.load(
'DAMO_ConvAI/FrDoc2BotRetrieval',
download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS)
vi_train_dataset = MsDataset.load(
'DAMO_ConvAI/ViDoc2BotRetrieval',
download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS)
train_dataset = [x for dataset in [fr_train_dataset, vi_train_dataset] for x in dataset]
to_train_dataset = [x for i, x in enumerate(fr_train_dataset) if i < 3000] + \
[x for i, x in enumerate(vi_train_dataset) if i < 3000]
to_valid_dataset = [x for i, x in enumerate(fr_train_dataset) if i >= 3000] + \
[x for i, x in enumerate(vi_train_dataset) if i >= 3000]
all_passages = []
for file_name in ['fr', 'vi']:
with open(f'all_passages/{file_name}.json', encoding='utf-8') as f:
all_passages += json.load(f)
model_path = user_args.pretrain_model_dir
preprocessor = DocumentGroundedDialogRetrievalPreprocessor(model_dir=user_args.pretrain_model_dir)
if user_args.valid_only:
print(f'Total spilt train samples is : {len(to_train_dataset)}, '
f'total split valid samples is : {len(to_valid_dataset)} !!!')
trainer = DocumentGroundedDialogRetrievalTrainer(
model=model_path,
train_dataset=to_train_dataset,
eval_dataset=to_valid_dataset,
all_passages=all_passages)
else:
print(f'>>> Total num of samples is : {len(train_dataset)} !!!')
trainer = DocumentGroundedDialogRetrievalTrainer(
model=model_path,
train_dataset=train_dataset,
eval_dataset=train_dataset,
all_passages=all_passages)
train(
trainer=trainer,
norm=user_args.norm,
batch_size=user_args.batch_size,
per_gpu_batch_size=user_args.val_batch_size,
total_epoches=user_args.total_epoches,
weight_decay=user_args.weight_decay,
warmup_ratio=user_args.warmup_ratio,
learning_rate=user_args.lr,
eps=user_args.eps,
accumulation_steps=user_args.accumulation_steps,
clip_grad_norm=user_args.clip_grad_norm,
loss_log_freq=user_args.log_freq,
ema=user_args.ema,
adv=user_args.adv,
adv_eps=user_args.adv_eps
)
evaluate(
trainer,
return_type=user_args.return_type,
norm=user_args.norm,
top_k=user_args.top_k,
per_gpu_batch_size=user_args.val_batch_size,
checkpoint_path=os.path.join('model_storage/retrieval_storage', 'finetuned_model.bin')
)