forked from kellydunn/go-art
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathart_tree.go
366 lines (303 loc) · 9.9 KB
/
art_tree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// Pacakge art provides a golang implementation of Adaptive Radix Trees
package art
import (
"bytes"
_ "math"
_ "os"
)
type ArtTree struct {
root *ArtNode
size int64
}
// Creates and returns a new Art Tree with a nil root and a size of 0.
func NewArtTree() *ArtTree {
return &ArtTree{root: nil, size: 0}
}
type Result struct {
Key []byte
Value interface{}
}
func (t *ArtTree) EachChanResult() chan Result {
return t.EachChanResultFrom(t.root)
}
func (t *ArtTree) EachChanResultFrom(start *ArtNode) chan Result {
outChan := make(chan Result)
go func() {
if start != nil {
for n := range t.EachChanFrom(start) {
if n.IsLeaf() {
outChan <- Result{n.key, n.value}
}
}
}
close(outChan)
}()
return outChan
}
// Finds the starting node for a prefix search and returns an array of all the objects under it
func (t *ArtTree) PrefixSearch(key []byte) []interface{} {
ret := make([]interface{}, 0)
for r := range t.PrefixSearchChan(key) {
ret = append(ret, r.Value)
}
return ret
}
func (t *ArtTree) PrefixSearchChan(key []byte) chan Result {
return t.EachChanResultFrom(t.searchHelper(t.root, key, 0))
}
// Returns the node that contains the passed in key, or nil if not found.
func (t *ArtTree) Search(key []byte) interface{} {
key = ensureNullTerminatedKey(key)
foundNode := t.searchHelper(t.root, key, 0)
if foundNode != nil && foundNode.IsMatch(key) {
return foundNode.value
}
return nil
}
// Recursive search helper function that traverses the tree.
// Returns the node that contains the passed in key, or nil if not found.
func (t *ArtTree) searchHelper(current *ArtNode, key []byte, depth int) *ArtNode {
// While we have nodes to search
if current != nil {
maxKeyIndex := len(key) - 1
if depth > maxKeyIndex {
return current
}
// Check if the current is a match (including prefix match)
if current.IsLeaf() && len(current.key) >= len(key) && bytes.Equal(key, current.key[0:len(key)]) {
return current
}
// Check if our key mismatches the current compressed path
prefixMismatch := current.PrefixMismatch(key, depth)
if prefixMismatch == current.prefixLen {
// whole prefix matches
depth += current.prefixLen
if depth > maxKeyIndex {
return current
}
} else if prefixMismatch == len(key)-depth {
// consumed whole key
return current
} else {
// mismatch
return nil
}
// Find the next node at the specified index, and update depth.
return t.searchHelper(*(current.FindChild(key[depth])), key, depth+1)
}
return nil
}
// Inserts the passed in value that is indexed by the passed in key into the ArtTree.
func (t *ArtTree) Insert(key []byte, value interface{}) {
key = ensureNullTerminatedKey(key)
t.insertHelper(t.root, &t.root, key, value, 0)
}
// Recursive helper function that traverses the tree until an insertion point is found.
// There are four methods of insertion:
//
// If the current node is null, a new node is created with the passed in key-value pair
// and inserted at the current position.
//
// If the current node is a leaf node, it will expand to a new ArtNode of type NODE4
// to contain itself and a new leaf node containing the passed in key-value pair.
//
// If the current node's prefix differs from the key at a specified depth,
// a new ArtNode of type NODE4 is created to contain the current node and the new leaf node
// with an adjusted prefix to account for the mismatch.
//
// If there is no child at the specified key at the current depth of traversal, a new leaf node
// is created and inserted at this position.
func (t *ArtTree) insertHelper(current *ArtNode, currentRef **ArtNode, key []byte, value interface{}, depth int) {
// @spec: Usually, the leaf can
// simply be inserted into an existing inner node, after growing
// it if necessary.
if current == nil {
*currentRef = NewLeafNode(key, value)
t.size += 1
return
}
// @spec: If, because of lazy expansion,
// an existing leaf is encountered, it is replaced by a new
// inner node storing the existing and the new leaf
if current.IsLeaf() {
// TODO Determine if we should overwrite keys if they are attempted to overwritten.
// Currently, we bail if the key matches.
if current.IsMatch(key) {
return
}
// Create a new Inner Node to contain the new Leaf and the current node.
newNode4 := NewNode4()
newLeafNode := NewLeafNode(key, value)
// Determine the longest common prefix between our current node and the key
limit := current.LongestCommonPrefix(newLeafNode, depth)
newNode4.prefixLen = limit
memcpy(newNode4.prefix, key[depth:], min(newNode4.prefixLen, MAX_PREFIX_LEN))
*currentRef = newNode4
// Add both children to the new Inner Node
newNode4.AddChild(current.key[depth+newNode4.prefixLen], current)
newNode4.AddChild(key[depth+newNode4.prefixLen], newLeafNode)
t.size += 1
return
}
// @spec: Another special case occurs if the key of the new leaf
// differs from a compressed path: A new inner node is created
// above the current node and the compressed paths are adjusted accordingly.
if current.prefixLen != 0 {
mismatch := current.PrefixMismatch(key, depth)
// If the key differs from the compressed path
if mismatch != current.prefixLen {
// Create a new Inner Node that will contain the current node
// and the desired insertion key
newNode4 := NewNode4()
*currentRef = newNode4
newNode4.prefixLen = mismatch
// Copy the mismatched prefix into the new inner node.
memcpy(newNode4.prefix, current.prefix, mismatch)
// Adjust prefixes so they fit underneath the new inner node
if current.prefixLen < MAX_PREFIX_LEN {
newNode4.AddChild(current.prefix[mismatch], current)
current.prefixLen -= (mismatch + 1)
memmove(current.prefix, current.prefix[mismatch+1:], min(current.prefixLen, MAX_PREFIX_LEN))
} else {
current.prefixLen -= (mismatch + 1)
minKey := current.Minimum().key
newNode4.AddChild(minKey[depth+mismatch], current)
memmove(current.prefix, minKey[depth+mismatch+1:], min(current.prefixLen, MAX_PREFIX_LEN))
}
// Attach the desired insertion key
newLeafNode := NewLeafNode(key, value)
newNode4.AddChild(key[depth+mismatch], newLeafNode)
t.size += 1
return
}
depth += current.prefixLen
}
// Find the next child
next := current.FindChild(key[depth])
// If we found a child that matches the key at the current depth
if *next != nil {
// Recurse, and keep looking for an insertion point
t.insertHelper(*next, next, key, value, depth+1)
} else {
// Otherwise, Add the child at the current position.
current.AddChild(key[depth], NewLeafNode(key, value))
t.size += 1
}
}
// Removes the child that is accessed by the passed in key.
func (t *ArtTree) Remove(key []byte) {
key = ensureNullTerminatedKey(key)
t.removeHelper(t.root, &t.root, key, 0)
}
// Recursive helper for Removing child nodes.
// There are two methods for removal:
//
// If the current node is a leaf and matches the specified key, remove it.
//
// If the next child at the specifed key and depth matches,
// the current node shall remove it accordingly.
func (t *ArtTree) removeHelper(current *ArtNode, currentRef **ArtNode, key []byte, depth int) {
// Bail early if we are at a nil node.
if current == nil {
return
}
// If the current node matches, remove it.
if current.IsLeaf() {
if current.IsMatch(key) {
*currentRef = nil
t.size -= 1
return
}
}
// If the current node contains a prefix length
if current.prefixLen != 0 {
// Bail out if we encounter a mismatch
mismatch := current.PrefixMismatch(key, depth)
if mismatch != current.prefixLen {
return
}
// Increase traversal depth
depth += current.prefixLen
}
// Find the next child
next := current.FindChild(key[depth])
// Let the Inner Node handle the removal logic if the child is a match
if *next != nil && (*next).IsLeaf() && (*next).IsMatch(key) {
current.RemoveChild(key[depth])
t.size -= 1
// Otherwise, recurse. t.size -= 1
} else {
t.removeHelper(*next, next, key, depth+1)
}
}
// Convenience method for EachPreorder
func (t *ArtTree) Each(callback func(*ArtNode)) {
for n := range t.EachChanFrom(t.root) {
callback(n)
}
}
func (t *ArtTree) EachChan() chan *ArtNode {
return t.EachChanFrom(t.root)
}
func (t *ArtTree) EachChanFrom(start *ArtNode) chan *ArtNode {
nodeChan := make(chan *ArtNode)
go func() {
t.eachHelper(start, nodeChan)
close(nodeChan)
}()
return nodeChan
}
// Recursive helper for iterative over the ArtTree. Iterates over all nodes in the tree,
// putting the found nodes on the channel
func (t *ArtTree) eachHelper(current *ArtNode, dest chan *ArtNode) {
// Bail early if there's no node to iterate over
if current == nil {
return
}
dest <- current
// Art Nodes of type NODE48 do not necessarily store their children in sorted order.
// So we must instead iterate over their keys, acccess the children, and iterate properly.
if current.nodeType == NODE48 {
for i := 0; i < len(current.keys); i++ {
index := current.keys[byte(i)]
if index > 0 {
next := current.children[index-1]
if next != nil {
// Recurse
t.eachHelper(next, dest)
}
}
}
// Art Nodes of type NODE4, NODE16, and NODE256 keep their children in order,
// So we can access them iteratively.
} else {
for i := 0; i < len(current.children); i++ {
next := current.children[i]
if next != nil {
// Recurse
t.eachHelper(next, dest)
}
}
}
}
func memcpy(dest []byte, src []byte, numBytes int) {
for i := 0; i < numBytes && i < len(src) && i < len(dest); i++ {
dest[i] = src[i]
}
}
func memmove(dest []byte, src []byte, numBytes int) {
for i := 0; i < numBytes; i++ {
dest[i] = src[i]
}
}
// Returns the passed in key as a null terminated byte array
// if it is not already null terminated.
func ensureNullTerminatedKey(key []byte) []byte {
index := bytes.Index(key, []byte{0})
// Is there a null terminated character?
if index < 0 {
// Append one.
key = append(key, byte(0))
}
return key
}