Similar to the case study on whole genome sequencing data, in this study we describe applying DeepVariant to a real exome sample using a single machine.
Please see the metrics page for details on runtime and data.
Docker will be used to run DeepVariant and hap.py,
We will be using GRCh38 for this case study.
mkdir -p reference
FTPDIR=ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz | gunzip > reference/GRCh38_no_alt_analysis_set.fasta
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.fai > reference/GRCh38_no_alt_analysis_set.fasta.fai
We will benchmark our variant calls against v4.2.1 of the Genome in a Bottle small variant benchmarks for HG003.
mkdir -p benchmark
FTPDIR=ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv4.2.1/GRCh38
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi
mkdir -p input
HTTPDIR=https://storage.googleapis.com/deepvariant/exome-case-study-testdata
curl ${HTTPDIR}/HG003.novaseq.wes_idt.100x.dedup.bam > input/HG003.novaseq.wes_idt.100x.dedup.bam
curl ${HTTPDIR}/HG003.novaseq.wes_idt.100x.dedup.bam.bai > input/HG003.novaseq.wes_idt.100x.dedup.bam.bai
In this case study we'll use idt_capture_novogene.grch38.bed
as the capture
target BED file. For evaluation, hap.py
will intersect this BED with the GIAB
confident regions.
HTTPDIR=https://storage.googleapis.com/deepvariant/exome-case-study-testdata
curl ${HTTPDIR}/idt_capture_novogene.grch38.bed > input/idt_capture_novogene.grch38.bed
mkdir -p output
mkdir -p output/intermediate_results_dir
BIN_VERSION="1.8.0"
sudo docker run \
-v "${PWD}/input":"/input" \
-v "${PWD}/output":"/output" \
-v "${PWD}/reference":"/reference" \
google/deepvariant:"${BIN_VERSION}" \
/opt/deepvariant/bin/run_deepvariant \
--model_type WES \
--ref /reference/GRCh38_no_alt_analysis_set.fasta \
--reads /input/HG003.novaseq.wes_idt.100x.dedup.bam \
--regions /input/idt_capture_novogene.grch38.bed \
--output_vcf /output/HG003.output.vcf.gz \
--output_gvcf /output/HG003.output.g.vcf.gz \
--num_shards $(nproc) \
--intermediate_results_dir /output/intermediate_results_dir
By specifying --model_type WES
, you'll be using a model that is best suited
for Illumina Whole Exome Sequencing data.
NOTE: If you want to run each of the steps separately, add --dry_run=true
to the command above to figure out what flags you need in each step. Based on
the different model types, different flags are needed in the make_examples
step.
--intermediate_results_dir
flag is optional. By specifying it, the
intermediate outputs of make_examples
and call_variants
stages can be found
in the directory. After the command, you can find these files in the directory:
call_variants_output.tfrecord.gz
gvcf.tfrecord-?????-of-?????.gz
make_examples.tfrecord-?????-of-?????.gz
For running on GPU machines, or using Singularity instead of Docker, see Quick Start.
mkdir -p happy
sudo docker pull jmcdani20/hap.py:v0.3.12
sudo docker run \
-v "${PWD}/benchmark":"/benchmark" \
-v "${PWD}/input":"/input" \
-v "${PWD}/output":"/output" \
-v "${PWD}/reference":"/reference" \
-v "${PWD}/happy:/happy" \
jmcdani20/hap.py:v0.3.12 /opt/hap.py/bin/hap.py \
/benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz \
/output/HG003.output.vcf.gz \
-f /benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed \
-T /input/idt_capture_novogene.grch38.bed \
-r /reference/GRCh38_no_alt_analysis_set.fasta \
-o /happy/happy.output \
--engine=vcfeval \
--pass-only
Output:
Benchmarking Summary:
Type Filter TRUTH.TOTAL TRUTH.TP TRUTH.FN QUERY.TOTAL QUERY.FP QUERY.UNK FP.gt FP.al METRIC.Recall METRIC.Precision METRIC.Frac_NA METRIC.F1_Score TRUTH.TOTAL.TiTv_ratio QUERY.TOTAL.TiTv_ratio TRUTH.TOTAL.het_hom_ratio QUERY.TOTAL.het_hom_ratio
INDEL ALL 1051 1020 31 1466 7 417 6 0 0.970504 0.993327 0.284447 0.981783 NaN NaN 1.747283 1.878486
INDEL PASS 1051 1020 31 1466 7 417 6 0 0.970504 0.993327 0.284447 0.981783 NaN NaN 1.747283 1.878486
SNP ALL 25279 24984 295 27711 60 2665 36 4 0.988330 0.997604 0.096171 0.992946 2.854703 2.761569 1.623027 1.627764
SNP PASS 25279 24984 295 27711 60 2665 36 4 0.988330 0.997604 0.096171 0.992946 2.854703 2.761569 1.623027 1.627764