Skip to content

Latest commit

 

History

History
166 lines (121 loc) · 6.26 KB

pangenome-aware-wes-bwa-case-study.md

File metadata and controls

166 lines (121 loc) · 6.26 KB

DeepVariant Pangenome-aware WES case study (mapped with BWA)

To make it faster to run over this case study, we run only on chromosome 20.

Prepare environment

Tools

Docker will be used to run DeepVariant and hap.py,

Download Reference

We will be using GRCh38 for this case study.

mkdir -p reference

FTPDIR=ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids

curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz | gunzip > reference/GRCh38_no_alt_analysis_set.fasta
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.fai > reference/GRCh38_no_alt_analysis_set.fasta.fai

Download Genome in a Bottle Benchmarks

We will benchmark our variant calls against v4.2.1 of the Genome in a Bottle small variant benchmarks for HG003.

mkdir -p benchmark

FTPDIR=ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv4.2.1/GRCh38

curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi

Download HG003 chr20 BAM

We'll use HG003 Illumina WES reads.

mkdir -p input
HTTPDIR=https://storage.googleapis.com/deepvariant/exome-case-study-testdata

curl ${HTTPDIR}/HG003.novaseq.wes_idt.100x.dedup.bam > input/HG003.novaseq.wes_idt.100x.dedup.bam
curl ${HTTPDIR}/HG003.novaseq.wes_idt.100x.dedup.bam.bai > input/HG003.novaseq.wes_idt.100x.dedup.bam.bai

Download capture target BED file

In this case study we'll use idt_capture_novogene.grch38.bed as the capture target BED file. For evaluation, hap.py will intersect this BED with the GIAB confident regions.

HTTPDIR=https://storage.googleapis.com/deepvariant/exome-case-study-testdata

curl ${HTTPDIR}/idt_capture_novogene.grch38.bed > input/idt_capture_novogene.grch38.bed

Download GBZ built for GRCh38

mkdir -p input
HTTPDIR=https://s3-us-west-2.amazonaws.com/human-pangenomics/pangenomes/freeze/freeze1/minigraph-cactus/hprc-v1.1-mc-grch38

curl ${HTTPDIR}/hprc-v1.1-mc-grch38.gbz > input/hprc-v1.1-mc-grch38.gbz

Running Pangenome-aware DeepVariant with one command

DeepVariant pipeline consists of 3 steps: make_examples, call_variants, and postprocess_variants. You can now run DeepVariant with one command using the run_pangenome_aware_deepvariant script.

Running on a CPU-only machine

In this example, we used a n2-standard-96 machine.

mkdir -p output
mkdir -p output/intermediate_results_dir

BIN_VERSION="pangenome_aware_deepvariant-1.8.0"

sudo docker pull google/deepvariant:"${BIN_VERSION}"

sudo docker run \
  -v "${PWD}/input":"/input" \
  -v "${PWD}/output":"/output" \
  -v "${PWD}/reference":"/reference" \
  --shm-size 12gb \
  google/deepvariant:"${BIN_VERSION}" \
  /opt/deepvariant/bin/run_pangenome_aware_deepvariant \
  --model_type WES \
  --ref /reference/GRCh38_no_alt_analysis_set.fasta \
  --reads /input/HG003.novaseq.wes_idt.100x.dedup.bam  \
  --pangenome /input/hprc-v1.1-mc-grch38.gbz \
  --output_vcf /output/HG003.output.vcf.gz \
  --output_gvcf /output/HG003.output.g.vcf.gz \
  --num_shards $(nproc) \
  --regions chr20 \
  --intermediate_results_dir /output/intermediate_results_dir

By specifying --model_type WES, you'll be using a model that is best suited for short-read WES data.

NOTE: If you want to run each of the steps separately, add --dry_run=true to the command above to figure out what flags you need in each step.

--intermediate_results_dir flag is optional. By specifying it, the intermediate outputs can be found in the directory. After the command, you can find these intermediate files in the directory:

call_variants_output-?????-of-?????.tfrecord.gz
gvcf.tfrecord-?????-of-?????.gz
make_examples_pangenome_aware_dv.tfrecord-?????-of-?????.gz

For running on GPU machines, or using Singularity instead of Docker, see Quick Start.

Benchmark on chr20

mkdir -p happy

sudo docker pull jmcdani20/hap.py:v0.3.12

sudo docker run \
  -v "${PWD}/benchmark":"/benchmark" \
  -v "${PWD}/input":"/input" \
  -v "${PWD}/output":"/output" \
  -v "${PWD}/reference":"/reference" \
  -v "${PWD}/happy:/happy" \
  jmcdani20/hap.py:v0.3.12 \
  /opt/hap.py/bin/hap.py \
  /benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz \
  /output/HG003.output.vcf.gz \
  -f /benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed \
  -T /input/idt_capture_novogene.grch38.bed \
  -r /reference/GRCh38_no_alt_analysis_set.fasta \
  -o /happy/happy.output \
  --engine=vcfeval \
  --pass-only \
  -l chr20

Output:

Benchmarking Summary:
Type Filter  TRUTH.TOTAL  TRUTH.TP  TRUTH.FN  QUERY.TOTAL  QUERY.FP  QUERY.UNK  FP.gt  FP.al  METRIC.Recall  METRIC.Precision  METRIC.Frac_NA  METRIC.F1_Score  TRUTH.TOTAL.TiTv_ratio  QUERY.TOTAL.TiTv_ratio  TRUTH.TOTAL.het_hom_ratio  QUERY.TOTAL.het_hom_ratio
INDEL    ALL           29        29         0           41         0         11      0      0        1.00000               1.0        0.268293         1.000000                     NaN                     NaN                   3.000000                   2.727273
INDEL   PASS           29        29         0           41         0         11      0      0        1.00000               1.0        0.268293         1.000000                     NaN                     NaN                   3.000000                   2.727273
  SNP    ALL          685       683         2          704         0         21      0      0        0.99708               1.0        0.029830         0.998538                 3.28125                3.266667                   1.795918                   1.838710
  SNP   PASS          685       683         2          704         0         21      0      0        0.99708               1.0        0.029830         0.998538                 3.28125                3.266667                   1.795918                   1.838710