Skip to content

Latest commit

 

History

History
154 lines (113 loc) · 6.02 KB

pangenome-aware-wgs-bwa-case-study.md

File metadata and controls

154 lines (113 loc) · 6.02 KB

DeepVariant Pangenome-aware WGS case study (mapped with BWA)

To make it faster to run over this case study, we run only on chromosome 20.

Prepare environment

Tools

Docker will be used to run DeepVariant and hap.py,

Download Reference

We will be using GRCh38 for this case study.

mkdir -p reference

FTPDIR=ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids

curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz | gunzip > reference/GRCh38_no_alt_analysis_set.fasta
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.fai > reference/GRCh38_no_alt_analysis_set.fasta.fai

Download Genome in a Bottle Benchmarks

We will benchmark our variant calls against v4.2.1 of the Genome in a Bottle small variant benchmarks for HG003.

mkdir -p benchmark

FTPDIR=ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv4.2.1/GRCh38

curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi

Download HG003 chr20 BAM

We'll use HG003 Illumina WGS reads publicly available from the PrecisionFDA Truth v2 Challenge.

mkdir -p input
HTTPDIR=https://storage.googleapis.com/deepvariant/case-study-testdata

curl ${HTTPDIR}/HG003.novaseq.pcr-free.35x.dedup.grch38_no_alt.chr20.bam > input/HG003.novaseq.pcr-free.35x.dedup.grch38_no_alt.chr20.bam
curl ${HTTPDIR}/HG003.novaseq.pcr-free.35x.dedup.grch38_no_alt.chr20.bam.bai > input/HG003.novaseq.pcr-free.35x.dedup.grch38_no_alt.chr20.bam.bai

Download GBZ built for GRCh38

mkdir -p input
HTTPDIR=https://s3-us-west-2.amazonaws.com/human-pangenomics/pangenomes/freeze/freeze1/minigraph-cactus/hprc-v1.1-mc-grch38

curl ${HTTPDIR}/hprc-v1.1-mc-grch38.gbz > input/hprc-v1.1-mc-grch38.gbz

Running Pangenome-aware DeepVariant with one command

DeepVariant pipeline consists of 3 steps: make_examples, call_variants, and postprocess_variants. You can now run DeepVariant with one command using the run_pangenome_aware_deepvariant script.

Running on a CPU-only machine

In this example, we used a n2-standard-96 machine.

mkdir -p output
mkdir -p output/intermediate_results_dir

BIN_VERSION="pangenome_aware_deepvariant-1.8.0"

sudo docker pull google/deepvariant:"${BIN_VERSION}"

sudo docker run \
  -v "${PWD}/input":"/input" \
  -v "${PWD}/output":"/output" \
  -v "${PWD}/reference":"/reference" \
  --shm-size 12gb \
  google/deepvariant:"${BIN_VERSION}" \
  /opt/deepvariant/bin/run_pangenome_aware_deepvariant \
  --model_type WGS \
  --ref /reference/GRCh38_no_alt_analysis_set.fasta \
  --reads /input//HG003.novaseq.pcr-free.35x.dedup.grch38_no_alt.chr20.bam  \
  --pangenome /input/hprc-v1.1-mc-grch38.gbz \
  --output_vcf /output/HG003.output.vcf.gz \
  --output_gvcf /output/HG003.output.g.vcf.gz \
  --num_shards $(nproc) \
  --regions chr20 \
  --intermediate_results_dir /output/intermediate_results_dir

By specifying --model_type WGS, you'll be using a model that is best suited for short-read WGS data.

NOTE: If you want to run each of the steps separately, add --dry_run=true to the command above to figure out what flags you need in each step.

--intermediate_results_dir flag is optional. By specifying it, the intermediate outputs can be found in the directory. After the command, you can find these intermediate files in the directory:

call_variants_output-?????-of-?????.tfrecord.gz
gvcf.tfrecord-?????-of-?????.gz
make_examples_pangenome_aware_dv.tfrecord-?????-of-?????.gz

For running on GPU machines, or using Singularity instead of Docker, see Quick Start.

Benchmark on chr20

mkdir -p happy

sudo docker pull jmcdani20/hap.py:v0.3.12

sudo docker run \
  -v "${PWD}/benchmark":"/benchmark" \
  -v "${PWD}/input":"/input" \
  -v "${PWD}/output":"/output" \
  -v "${PWD}/reference":"/reference" \
  -v "${PWD}/happy:/happy" \
  jmcdani20/hap.py:v0.3.12 \
  /opt/hap.py/bin/hap.py \
  /benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz \
  /output/HG003.output.vcf.gz \
  -f /benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed \
  -r /reference/GRCh38_no_alt_analysis_set.fasta \
  -o /happy/happy.output \
  --engine=vcfeval \
  --pass-only \
  -l chr20

Output:

Benchmarking Summary:
Type Filter  TRUTH.TOTAL  TRUTH.TP  TRUTH.FN  QUERY.TOTAL  QUERY.FP  QUERY.UNK  FP.gt  FP.al  METRIC.Recall  METRIC.Precision  METRIC.Frac_NA  METRIC.F1_Score  TRUTH.TOTAL.TiTv_ratio  QUERY.TOTAL.TiTv_ratio  TRUTH.TOTAL.het_hom_ratio  QUERY.TOTAL.het_hom_ratio
INDEL    ALL        10628     10584        44        20850        19       9790     14      5       0.995860          0.998282        0.469544          0.99707                     NaN                     NaN                   1.748961                   2.291024
INDEL   PASS        10628     10584        44        20850        19       9790     14      5       0.995860          0.998282        0.469544          0.99707                     NaN                     NaN                   1.748961                   2.291024
  SNP    ALL        70166     69932       234        86798        66      16764     45      3       0.996665          0.999058        0.193138          0.99786                2.296566                2.016604                   1.883951                   1.739749
  SNP   PASS        70166     69932       234        86798        66      16764     45      3       0.996665          0.999058        0.193138          0.99786                2.296566                2.016604                   1.883951                   1.739749