-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdiet_optimizer.py
237 lines (190 loc) · 8.54 KB
/
diet_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import csv
from ortools.linear_solver import pywraplp
from ortools.linear_solver.linear_solver_natural_api import SumArray
calories_name = 'energy (kcal)'
def from_csv(filename, headers=True):
'''
Given the name of a csv file whose first line are headers,
return a list of dictionaries, one for each row of the file,
whose keys are the header for that column.
'''
with open(filename, 'r') as infile:
reader = csv.reader(infile)
lines = [x for x in reader]
header = lines[0]
lines = lines[1:]
table = [dict(zip(header, line)) for line in lines]
return table
class DietOptimizer(object):
def __init__(self, nutrient_data_filename='nutrients.csv',
nutrient_constraints_filename='constraints.csv'):
self.food_table = from_csv(nutrient_data_filename)
# clean up food table
for entry in self.food_table:
for key in entry:
if not entry[key].strip():
entry[key] = 0.0
else:
try:
entry[key] = float(entry[key])
except ValueError:
pass
self.constraints_table = from_csv(nutrient_constraints_filename)
# clean up constraints table
for entry in self.constraints_table:
for key in entry:
try:
entry[key] = float(entry[key])
except ValueError:
pass
self.solver = pywraplp.Solver('diet_optimizer', pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
self.create_variable_dict()
# treat these nutrient constraints as a percentage of the total calories
self.percent_constraints = {
'total fat (g)': {'calories_per_gram': 9},
}
self.create_constraints()
self.objective = self.solver.Objective()
for row in self.food_table:
name = row['description']
var = self.variable_dict[name]
calories_in_food = row[calories_name]
self.objective.SetCoefficient(var, calories_in_food)
self.objective.SetMinimization()
def solve(self):
'''
Return a dictionary with 'foods' and 'nutrients' keys representing
the solution and the nutrient amounts
'''
status = self.solver.Solve()
if status not in [self.solver.OPTIMAL, self.solver.FEASIBLE]:
raise Exception('Unable to find feasible solution')
chosen_foods = {
food_name: var.solution_value()
for food_name, var in self.variable_dict.items() if var.solution_value() > 1e-10
}
self.chosen_foods = chosen_foods
nutrients = {
row['nutrient']: self.nutrients_in_diet(chosen_foods, row['nutrient'])
for row in self.constraints_table
}
return {
'foods': chosen_foods,
'nutrients': nutrients,
}
def nutrients_in_diet(self, chosen_foods, nutrient_name):
return sum(
row[nutrient_name] * chosen_foods[row['description']]
for row in self.food_table if row['description'] in chosen_foods
)
def create_variable_dict(self):
'''
The variables are the amount of each food to include
'''
self.variable_dict = dict(
(row['description'], self.solver.NumVar(0, 10, row['description']))
for row in self.food_table
)
def create_constraints(self):
self.constraint_dict = dict()
self.constraint_bounds = dict()
# nutrient amount constraints
for row in self.constraints_table:
nutrient = row['nutrient']
lower_bound = row['lower_bound']
upper_bound = row['upper_bound']
self.constraint_bounds[nutrient] = (lower_bound, upper_bound)
self.create_constraint(nutrient, lower_bound, upper_bound)
def create_constraint(self, nutrient_name, lower, upper):
'''
Each constraint is a lower and upper bound on the
sum of all food variables, scaled by how much of the
relevant nutrient is in that food.
'''
if not lower:
return
if nutrient_name in self.percent_constraints:
calories_per_gram = self.percent_constraints[nutrient_name]['calories_per_gram']
self.create_percent_constraint(nutrient_name, lower, upper, calories_per_gram=calories_per_gram)
return
sum_of_foods = self.foods_for_nutrient(nutrient_name)
constraint_lb = lower <= sum_of_foods
self.solver.Add(constraint_lb)
self.constraint_dict[nutrient_name + ' (lower bound)'] = constraint_lb
if not upper:
return
constraint_ub = sum_of_foods <= upper
self.solver.Add(constraint_ub)
self.constraint_dict[nutrient_name + ' (upper bound)'] = constraint_ub
def foods_for_nutrient(self, nutrient_name, scale_by=1.0):
# a helper function that computes the scaled sum of all food variables
# for a given nutrient
relevant_foods = []
for row in self.food_table:
var = self.variable_dict[row['description']]
nutrient_amount = row[nutrient_name]
if nutrient_amount > 0:
relevant_foods.append(scale_by * nutrient_amount * var)
if len(relevant_foods) == 0:
print('Warning! Nutrient %s has no relevant foods!'.format(nutrient_name))
return
return SumArray(relevant_foods)
def create_percent_constraint(self, nutrient_name, lower, upper, calories_per_gram):
'''
Compute the constraint that says the total consumed nutrient
must be between `lower` and `upper` percent of the total calories.
'''
calories_lower_bound = self.foods_for_nutrient(calories_name, scale_by=lower/100)
calories_upper_bound = self.foods_for_nutrient(calories_name, scale_by=upper/100)
nutrient_total = self.foods_for_nutrient(nutrient_name, scale_by=calories_per_gram)
constraint_lb = calories_lower_bound <= nutrient_total
constraint_ub = nutrient_total <= calories_upper_bound
self.solver.Add(constraint_lb)
self.solver.Add(constraint_ub)
self.constraint_dict[nutrient_name + ' (lower bound)'] = constraint_lb
self.constraint_dict[nutrient_name + ' (upper bound)'] = constraint_ub
def summarize_optimization_problem(self):
for k, v in self.constraint_dict.items():
cstr = str(v)
if len(cstr) > 40:
print(str(k), '{}...{}'.format(cstr[:20], cstr[-20:]))
else:
print(str(k), cstr)
def summarize_solution(self, solution, print_details=False):
foods = solution['foods']
nutrients = solution['nutrients']
food_rows = {
row['description']: row for row in self.food_table if row['description'] in foods
}
print('Diet:')
print('-' * 50 + '\n')
for food in sorted(foods.keys()):
print('{:7.1f}g: {}'.format(foods[food] * 100, food))
if print_details:
for nutrient in nutrients:
if food_rows[food][nutrient] > 0:
nutrient_percent = 100 * (food_rows[food][nutrient] * foods[food] / nutrients[nutrient])
if nutrient_percent > 0.5:
print('\t{:3.1f}% of {}'.format(nutrient_percent, nutrient))
print()
print()
print('Nutrient totals')
print('-' * 50 + '\n')
fmt_string = '{:10.1f} {:5s}{:25s}{:20s}{}'
for nutrient in nutrients:
tokens = nutrient.split('(')
name, unit = '('.join(tokens[:-1]), tokens[-1]
unit = unit.strip(')')
percent = ''
if nutrient in self.percent_constraints:
calories_per_gram = self.percent_constraints[nutrient]['calories_per_gram']
percent_of_calories = nutrients[nutrient] * calories_per_gram / nutrients[calories_name]
percent = ' ({:3.1f}% of calories)'.format(percent_of_calories * 100)
(lower_bound, upper_bound) = self.constraint_bounds[nutrient]
bounds = ' [{}, {}]'.format(lower_bound, upper_bound)
print(fmt_string.format(nutrients[nutrient], unit, name, bounds, percent))
if __name__ == "__main__":
solver = DietOptimizer()
# solver.summarize_optimization_problem()
solution = solver.solve()
solver.summarize_solution(solution)