-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathinfer.py
75 lines (50 loc) · 2.16 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# --coding:utf-8--
import os
from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer
import time
import logging
device1=torch.device('cuda:0')
# device2=torch.device('cpu')
input_path = "./WavTokenizer/data/infer/lirbitts_testclean"
out_folder = './WavTokenizer/result/infer'
# os.system("rm -r %s"%(out_folder))
# os.system("mkdir -p %s"%(out_folder))
# ll="libritts_testclean500_large"
ll="wavtokenizer_smalldata_frame40_3s_nq1_code4096_dim512_kmeans200_attn_testclean_epoch34"
tmptmp=out_folder+"/"+ll
os.system("rm -r %s"%(tmptmp))
os.system("mkdir -p %s"%(tmptmp))
# 自己数据模型加载
config_path = "./WavTokenizer/configs/wavtokenizer_smalldata_frame40_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
model_path = "./WavTokenizer/result/train/wavtokenizer_smalldata_frame40_3s_nq1_code4096_dim512_kmeans200_attn/lightning_logs/version_3/checkpoints/wavtokenizer_checkpoint_epoch=24_step=137150_val_loss=5.6731.ckpt"
wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device1)
# wavtokenizer = wavtokenizer.to(device2)
with open(input_path,'r') as fin:
x=fin.readlines()
x = [i.strip() for i in x]
# 完成一些加速处理
features_all=[]
for i in range(len(x)):
wav, sr = torchaudio.load(x[i])
# print("***:",x[i])
# wav = convert_audio(wav, sr, 24000, 1) # (1,131040)
bandwidth_id = torch.tensor([0])
wav=wav.to(device1)
print(i)
features,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
features_all.append(features)
# wavtokenizer = wavtokenizer.to(device2)
for i in range(len(x)):
bandwidth_id = torch.tensor([0])
bandwidth_id = bandwidth_id.to(device1)
print(i)
audio_out = wavtokenizer.decode(features_all[i], bandwidth_id=bandwidth_id)
# print(i,time.time())
# breakpoint() # (1, 131200)
audio_path = out_folder + '/' + ll + '/' + x[i].split('/')[-1]
# os.makedirs(out_folder + '/' + ll, exist_ok=True)
torchaudio.save(audio_path, audio_out.cpu(), sample_rate=24000, encoding='PCM_S', bits_per_sample=16)