-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathrobust_models.py
508 lines (315 loc) · 9.6 KB
/
robust_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <headingcell level=2>
# M-Estimators for Robust Linear Modeling
# <codecell>
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import statsmodels.api as sm
# <markdowncell>
# * An M-estimator minimizes the function
#
# $$Q(e_i, \rho) = \sum_i~\rho(\frac{e_i}{s})$$
#
# where $\rho$ is a symmetric function of the residuals
#
# * The effect of $\rho$ is to reduce the influence of outliers
# * $s$ is an estimate of scale.
# * The robust estimates $\hat{\beta}$ are computed by the iteratively re-weighted least squares algorithm
# <rawcell>
# * We have several choices available for the weighting functions to be used
# <codecell>
norms = sm.robust.norms
# <codecell>
def plot_weights(support, weights_func, xlabels, xticks):
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.plot(support, weights_func(support))
ax.set_xticks(xticks)
ax.set_xticklabels(xlabels, fontsize=16)
ax.set_ylim(-.1, 1.1)
return ax
# <headingcell level=3>
# Andrew's Wave
# <codecell>
help(norms.AndrewWave.weights)
# <codecell>
a = 1.339
support = np.linspace(-np.pi*a, np.pi*a, 100)
andrew = norms.AndrewWave(a=a)
plot_weights(support, andrew.weights, ['$-\pi*a$', '0', '$\pi*a$'], [-np.pi*a, 0, np.pi*a]);
# <headingcell level=3>
# Hampel's 17A
# <codecell>
help(norms.Hampel.weights)
# <codecell>
c = 8
support = np.linspace(-3*c, 3*c, 1000)
hampel = norms.Hampel(a=2., b=4., c=c)
plot_weights(support, hampel.weights, ['3*c', '0', '3*c'], [-3*c, 0, 3*c]);
# <headingcell level=3>
# Huber's t
# <codecell>
help(norms.HuberT.weights)
# <codecell>
t = 1.345
support = np.linspace(-3*t, 3*t, 1000)
huber = norms.HuberT(t=t)
plot_weights(support, huber.weights, ['-3*t', '0', '3*t'], [-3*t, 0, 3*t]);
# <headingcell level=3>
# Least Squares
# <codecell>
help(norms.LeastSquares.weights)
# <codecell>
support = np.linspace(-3, 3, 1000)
lst_sq = norms.LeastSquares()
plot_weights(support, lst_sq.weights, ['-3', '0', '3'], [-3, 0, 3]);
# <headingcell level=3>
# Ramsay's Ea
# <codecell>
help(norms.RamsayE.weights)
# <codecell>
a = .3
support = np.linspace(-3*a, 3*a, 1000)
ramsay = norms.RamsayE(a=a)
plot_weights(support, ramsay.weights, ['-3*a', '0', '3*a'], [-3*a, 0, 3*a]);
# <headingcell level=3>
# Trimmed Mean
# <codecell>
help(norms.TrimmedMean.weights)
# <codecell>
c = 2
support = np.linspace(-3*c, 3*c, 1000)
trimmed = norms.TrimmedMean(c=c)
plot_weights(support, trimmed.weights, ['-3*c', '0', '3*c'], [-3*c, 0, 3*c]);
# <headingcell level=3>
# Tukey's Biweight
# <codecell>
help(norms.TukeyBiweight.weights)
# <codecell>
c = 4.685
support = np.linspace(-3*c, 3*c, 1000)
tukey = norms.TukeyBiweight(c=c)
plot_weights(support, tukey.weights, ['-3*c', '0', '3*c'], [-3*c, 0, 3*c]);
# <headingcell level=3>
# Scale Estimators
# <rawcell>
# * Robust estimates of the location
# <codecell>
x = np.array([1, 2, 3, 4, 500])
# <markdowncell>
# * The mean is not a robust estimator of location
# <codecell>
x.mean()
# <markdowncell>
# * The median, on the other hand, is a robust estimator with a breakdown point of 50%
# <codecell>
np.median(x)
# <rawcell>
# * Analagously for the scale
# * The standard deviation is not robust
# <codecell>
x.std()
# <markdowncell>
# Median Absolute Deviation
#
# $$ median_i |X_i - median_j(X_j)|) $$
# <markdowncell>
# Standardized Median Absolute Deviation is a consistent estimator for $\hat{\sigma}$
#
# $$\hat{\sigma}=K \cdot MAD$$
#
# where $K$ depends on the distribution. For the normal distribution for example,
#
# $$K = \Phi^{-1}(.75)$$
# <codecell>
stats.norm.ppf(.75)
# <codecell>
print x
# <codecell>
sm.robust.scale.stand_mad(x)
# <codecell>
np.array([1,2,3,4,5.]).std()
# <rawcell>
# * The default for Robust Linear Models is MAD
# * another popular choice is Huber's proposal 2
# <codecell>
np.random.seed(12345)
fat_tails = stats.t(6).rvs(40)
# <codecell>
kde = sm.nonparametric.KDE(fat_tails)
kde.fit()
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.plot(kde.support, kde.density);
# <codecell>
print fat_tails.mean(), fat_tails.std()
# <codecell>
print stats.norm.fit(fat_tails)
# <codecell>
print stats.t.fit(fat_tails, f0=6)
# <codecell>
huber = sm.robust.scale.Huber()
loc, scale = huber(fat_tails)
print loc, scale
# <codecell>
sm.robust.stand_mad(fat_tails)
# <codecell>
sm.robust.stand_mad(fat_tails, c=stats.t(6).ppf(.75))
# <codecell>
sm.robust.scale.mad(fat_tails)
# <headingcell level=3>
# Duncan's Occupational Prestige data - M-estimation for outliers
# <codecell>
from statsmodels.graphics.api import abline_plot
from statsmodels.formula.api import ols, rlm
# <codecell>
prestige = sm.datasets.get_rdataset("Duncan", "car", cache=True).data
# <codecell>
print prestige.head(10)
# <codecell>
fig = plt.figure(figsize=(12,12))
ax1 = fig.add_subplot(211, xlabel='Income', ylabel='Prestige')
ax1.scatter(prestige.income, prestige.prestige)
xy_outlier = prestige.ix['minister'][['income','prestige']]
ax1.annotate('Minister', xy_outlier, xy_outlier+1, fontsize=16)
ax2 = fig.add_subplot(212, xlabel='Education',
ylabel='Prestige')
ax2.scatter(prestige.education, prestige.prestige);
# <codecell>
ols_model = ols('prestige ~ income + education', prestige).fit()
print ols_model.summary()
# <codecell>
infl = ols_model.get_influence()
student = infl.summary_frame()['student_resid']
print student
# <codecell>
print student.ix[np.abs(student) > 2]
# <codecell>
print infl.summary_frame().ix['minister']
# <codecell>
sidak = ols_model.outlier_test('sidak')
sidak.sort('unadj_p', inplace=True)
print sidak
# <codecell>
fdr = ols_model.outlier_test('fdr_bh')
fdr.sort('unadj_p', inplace=True)
print fdr
# <codecell>
rlm_model = rlm('prestige ~ income + education', prestige).fit()
print rlm_model.summary()
# <codecell>
print rlm_model.weights
# <headingcell level=3>
# Hertzprung Russell data for Star Cluster CYG 0B1 - Leverage Points
# <markdowncell>
# * Data is on the luminosity and temperature of 47 stars in the direction of Cygnus.
# <codecell>
dta = sm.datasets.get_rdataset("starsCYG", "robustbase", cache=True).data
# <codecell>
from matplotlib.patches import Ellipse
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111, xlabel='log(Temp)', ylabel='log(Light)', title='Hertzsprung-Russell Diagram of Star Cluster CYG OB1')
ax.scatter(*dta.values.T)
# highlight outliers
e = Ellipse((3.5, 6), .2, 1, alpha=.25, color='r')
ax.add_patch(e);
ax.annotate('Red giants', xy=(3.6, 6), xytext=(3.8, 6),
arrowprops=dict(facecolor='black', shrink=0.05, width=2),
horizontalalignment='left', verticalalignment='bottom',
clip_on=True, # clip to the axes bounding box
fontsize=16,
)
# annotate these with their index
for i,row in dta.ix[dta['log.Te'] < 3.8].iterrows():
ax.annotate(i, row, row + .01, fontsize=14)
xlim, ylim = ax.get_xlim(), ax.get_ylim()
# <codecell>
from IPython.display import Image
Image(filename='star_diagram.png')
# <codecell>
y = dta['log.light']
X = sm.add_constant(dta['log.Te'], prepend=True)
ols_model = sm.OLS(y, X).fit()
abline_plot(model_results=ols_model, ax=ax)
# <codecell>
rlm_mod = sm.RLM(y, X, sm.robust.norms.TrimmedMean(.5)).fit()
abline_plot(model_results=rlm_mod, ax=ax, color='red')
# <markdowncell>
# * Why? Because M-estimators are not robust to leverage points.
# <codecell>
infl = ols_model.get_influence()
# <codecell>
h_bar = 2*(ols_model.df_model + 1 )/ols_model.nobs
hat_diag = infl.summary_frame()['hat_diag']
hat_diag.ix[hat_diag > h_bar]
# <codecell>
sidak2 = ols_model.outlier_test('sidak')
sidak2.sort('unadj_p', inplace=True)
print sidak2
# <codecell>
fdr2 = ols_model.outlier_test('fdr_bh')
fdr2.sort('unadj_p', inplace=True)
print fdr2
# <markdowncell>
# * Let's delete that line
# <codecell>
del ax.lines[-1]
# <codecell>
weights = np.ones(len(X))
weights[X[X['log.Te'] < 3.8].index.values - 1] = 0
wls_model = sm.WLS(y, X, weights=weights).fit()
abline_plot(model_results=wls_model, ax=ax, color='green')
# <markdowncell>
# * MM estimators are good for this type of problem, unfortunately, we don't yet have these yet.
# * It's being worked on, but it gives a good excuse to look at the R cell magics in the notebook.
# <codecell>
yy = y.values[:,None]
xx = X['log.Te'].values[:,None]
# <codecell>
%load_ext rmagic
%R library(robustbase)
%Rpush yy xx
%R mod <- lmrob(yy ~ xx);
%R params <- mod$coefficients;
%Rpull params
# <codecell>
%R print(mod)
# <codecell>
print params
# <codecell>
abline_plot(intercept=params[0], slope=params[1], ax=ax, color='green')
# <headingcell level=3>
# Exercise: Breakdown points of M-estimator
# <codecell>
np.random.seed(12345)
nobs = 200
beta_true = np.array([3, 1, 2.5, 3, -4])
X = np.random.uniform(-20,20, size=(nobs, len(beta_true)-1))
# stack a constant in front
X = sm.add_constant(X, prepend=True) # np.c_[np.ones(nobs), X]
mc_iter = 500
contaminate = .25 # percentage of response variables to contaminate
# <codecell>
all_betas = []
for i in range(mc_iter):
y = np.dot(X, beta_true) + np.random.normal(size=200)
random_idx = np.random.randint(0, nobs, size=int(contaminate * nobs))
y[random_idx] = np.random.uniform(-750, 750) #, size=len(random_idx))
beta_hat = sm.RLM(y, X).fit().params
all_betas.append(beta_hat)
# <codecell>
all_betas = np.asarray(all_betas)
se_loss = lambda x : np.linalg.norm(x, ord=2)**2
se_beta = map(se_loss, all_betas - beta_true)
# <headingcell level=4>
# Squared error loss
# <codecell>
np.array(se_beta).mean()
# <codecell>
all_betas.mean(0)
# <codecell>
beta_true
# <codecell>
se_loss(all_betas.mean(0) - beta_true)