-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtsa_arma.py
254 lines (154 loc) · 5 KB
/
tsa_arma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <headingcell level=3>
# ARMA example using sunpots data
# <codecell>
import numpy as np
from scipy import stats
import pandas
import matplotlib.pyplot as plt
import statsmodels.api as sm
# <codecell>
from statsmodels.graphics.api import qqplot
# <codecell>
print sm.datasets.sunspots.NOTE
# <codecell>
dta = sm.datasets.sunspots.load_pandas().data
# <codecell>
dta.index = pandas.Index(sm.tsa.datetools.dates_from_range('1700', '2008'))
del dta["YEAR"]
# <codecell>
dta.plot(figsize=(12,8));
# <codecell>
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(dta.values.squeeze(), lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(dta, lags=40, ax=ax2)
# <codecell>
arma_mod20 = sm.tsa.ARMA(dta, (2,0)).fit()
print arma_mod20.params
# <codecell>
arma_mod30 = sm.tsa.ARMA(dta, (3,0)).fit()
# <codecell>
print arma_mod20.aic, arma_mod20.bic, arma_mod20.hqic
# <codecell>
print arma_mod30.params
# <codecell>
print arma_mod30.aic, arma_mod30.bic, arma_mod30.hqic
# <markdowncell>
# * Does our model obey the theory?
# <codecell>
sm.stats.durbin_watson(arma_mod30.resid.values)
# <codecell>
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax = arma_mod30.resid.plot(ax=ax);
# <codecell>
resid = arma_mod30.resid
# <codecell>
stats.normaltest(resid)
# <codecell>
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
fig = qqplot(resid, line='q', ax=ax, fit=True)
# <codecell>
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(resid.values.squeeze(), lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(resid, lags=40, ax=ax2)
# <codecell>
r,q,p = sm.tsa.acf(resid.values.squeeze(), qstat=True)
data = np.c_[range(1,41), r[1:], q, p]
table = pandas.DataFrame(data, columns=['lag', "AC", "Q", "Prob(>Q)"])
print table.set_index('lag')
# <markdowncell>
# * This indicates a lack of fit.
# <markdowncell>
# * In-sample dynamic prediction. How good does our model do?
# <codecell>
predict_sunspots = arma_mod30.predict('1990', '2012', dynamic=True)
print predict_sunspots
# <codecell>
ax = dta.ix['1950':].plot(figsize=(12,8))
ax = predict_sunspots.plot(ax=ax, style='r--', label='Dynamic Prediction');
ax.legend();
ax.axis((-20.0, 38.0, -4.0, 200.0));
# <codecell>
def mean_forecast_err(y, yhat):
return y.sub(yhat).mean()
# <codecell>
mean_forecast_err(dta.SUNACTIVITY, predict_sunspots)
# <headingcell level=3>
# Exercise: Can you obtain a better fit for the Sunspots model? (Hint: sm.tsa.AR has a method select_order)
# <headingcell level=3>
# Simulated ARMA(4,1): Model Identification is Difficult
# <codecell>
from statsmodels.tsa.arima_process import arma_generate_sample, ArmaProcess
# <codecell>
np.random.seed(1234)
# include zero-th lag
arparams = np.array([1, .75, -.65, -.55, .9])
maparams = np.array([1, .65])
# <markdowncell>
# * Let's make sure this models is estimable.
# <codecell>
arma_t = ArmaProcess(arparams, maparams)
# <codecell>
arma_t.isinvertible()
# <codecell>
arma_t.isstationary()
# <rawcell>
# * What does this mean?
# <codecell>
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.plot(arma_t.generate_sample(size=50));
# <codecell>
arparams = np.array([1, .35, -.15, .55, .1])
maparams = np.array([1, .65])
arma_t = ArmaProcess(arparams, maparams)
arma_t.isstationary()
# <codecell>
arma_rvs = arma_t.generate_sample(size=500, burnin=250, scale=2.5)
# <codecell>
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(arma_rvs, lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(arma_rvs, lags=40, ax=ax2)
# <rawcell>
# * For mixed ARMA processes the Autocorrelation function is a mixture of exponentials and damped sine waves after (q-p) lags.
# * The partial autocorrelation function is a mixture of exponentials and dampened sine waves after (p-q) lags.
# <codecell>
arma11 = sm.tsa.ARMA(arma_rvs, (1,1)).fit()
resid = arma11.resid
r,q,p = sm.tsa.acf(resid, qstat=True)
data = np.c_[range(1,41), r[1:], q, p]
table = pandas.DataFrame(data, columns=['lag', "AC", "Q", "Prob(>Q)"])
print table.set_index('lag')
# <codecell>
arma41 = sm.tsa.ARMA(arma_rvs, (4,1)).fit()
resid = arma41.resid
r,q,p = sm.tsa.acf(resid, qstat=True)
data = np.c_[range(1,41), r[1:], q, p]
table = pandas.DataFrame(data, columns=['lag', "AC", "Q", "Prob(>Q)"])
print table.set_index('lag')
# <headingcell level=3>
# Exercise: How good of in-sample prediction can you do for another series, say, CPI
# <codecell>
macrodta = sm.datasets.macrodata.load_pandas().data
macrodta.index = pandas.Index(sm.tsa.datetools.dates_from_range('1959Q1', '2009Q3'))
cpi = macrodta["cpi"]
# <headingcell level=4>
# Hint:
# <codecell>
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax = cpi.plot(ax=ax);
ax.legend();
# <rawcell>
# P-value of the unit-root test, resoundly rejects the null of no unit-root.
# <codecell>
print sm.tsa.adfuller(cpi)[1]