-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayout.py
579 lines (508 loc) · 29 KB
/
layout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import math
import pandas as pd
from bokeh.io import curdoc
from bokeh.layouts import column
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, AutocompleteInput, Button, Text, HoverTool, MultiLine
#
# Constants needed for Jinja templating, should equal the identifiers within templates/index.html
#
TEMPLATE_PLOT_IDENTIFIER = "plot"
TEMPLATE_INPUTS_IDENTIFIER = "inputs"
#
# Default configuration values
#
# sizing stuff
DEFAULT_ASPECT_RATIO = 0.9
DEFAULT_X_RANGE = (-4.5, 7)
DEFAULT_Y_RANGE = (-0.075, 1.075)
DEFAULT_MIN_SPACE_X = 0.1
DEFAULT_MIN_SPACE_Y = 0.064
DEFAULT_TOTAL_DISPLAY_REGIONS = 10
DEFAULT_MIN_DISPLAY_REGIONS = 2
DEFAULT_FONT_SIZE = 16
# keys
DEFAULT_REGION_KEY = "District/County Town"
DEFAULT_PRIMARY_INCIDENCE_KEY = "New Cases in Last 14 Days"
DEFAULT_SECONDARY_INCIDENCE_KEY = "Last 7 Days"
DEFAULT_TIME_SAFE_KEY = "COVID-Free Days"
DEFAULT_POSTCODE_KEY = "Postcode"
DEFAULT_PERCENT_CHANGE_KEY = "Pct Change"
# units
DEFAULT_REGION_TYPE = "Region"
DEFAULT_TIME_SAFE_UNIT = "day"
DEFAULT_TIME_SAFE_PLURAL_UNIT = "days"
DEFAULT_INCIDENCE_UNIT = "case"
DEFAULT_INCIDENCE_PLURAL_UNIT = "cases"
DEFAULT_CALC_WITH_SECONDARY_INCIDENCE = None
# strings
DEFAULT_LAST_UPDATED_TEXT = "Last updated"
DEFAULT_LEGEND_TITLE = "Legend"
DEFAULT_SEARCHBAR_PLACEHOLDER = "Search for a region..."
DEFAULT_RESET_BUTTON_TEXT = "Reset"
DEFAULT_REGION_NAME_TOOLTIP = "Region Name"
DEFAULT_CATEGORY_TOOLTIP = "Category"
DEFAULT_REGION_CODE_TOOLTIP = "Region Code"
DEFAULT_TIME_SAFE_TOOLTIP = "COVID-Free Days"
DEFAULT_PRIMARY_INCIDENCE_TOOLTIP = "New Cases in Last 14 Days"
DEFAULT_SECONDARY_INCIDENCE_TOOLTIP = "New Cases in Last 7 Days"
DEFAULT_PERCENT_CHANGE_TOOLTIP = "Weekly Percent Change"
class VisualizationLayout:
""" VisualizationLayout generates visualizations of the COVID ranking data. It should be served with Bokeh's
serve command.
Data should be input as a .pkl file. It should have the columns corresponding to the keys listed in the constants.
The parameter defaults are set in accordance to ECV's use case and can be seen above.
--- Required Configuration ---
:param title is the title of the visualization
:param pickle_file is where the .pkl file is located (this is automatically set by the pipeline, and does not need
to be set unless running the visualization manually)
:param labels are the phases' labels. the first element is always the "Green Zone" and is sorted in descending order
with elements in time_safe_key.
:param descriptions are used to display the legend
:param lower_bounds are the lower bounds, inclusive, of the phases. an example is [0, 1, 20], where phase 1 only
includes 0 incidence (>= 0 and < 1, phase 2 includes incidence >= 1 and < 20, etc.
if you do not want a "Green Zone," set the first element of each labels, colors, etc. to None (~ in yaml).
:param colors are the colors of each phase
--- Sizing Stuff ---
:param aspect_ratio is the width/height of the plot. the ultimate size in pixels will be determined
by the page it is embeded on.
:param x_range represents the range of x values represented in the plot.
for reference, the box's width is 1 and it spans x = [0, 1]
:param y_range represents the range of y values represented in the plot.
for reference, the box's height is 1 and it spans y = [0, 1]
:param min_space_x is the minimum horizontal space in between each "branched" line. it is proportional to x_range.
:param min_space_y is the minimum vertical space in between each county's text and line elements.
it is proportional to y_range, and should be about the height of one line of text.
:param total_display_regions is the number of regions that appear in total (excluding searched regions).
it will be divided proportionally among the categories, based on how many regions are in that category.
:param min_display_regions is the minimum number of regions that will be displayed for a category (if possible)
:param font_size is the font size, in pixels, of the text rendered on the plot
--- Units ---
:param region_type should describe the granularity of the input data.
for example, input "City" for city-level data. this is used in the hover tooltips.
:param time_safe_unit should describe the unit used to count the time a region has been "safe" (e.g. day)
:param time_safe_plural_unit should be same as time_safe_unit but plural (e.g. days)
:param incidence_unit should describe the unit used to represent incidence (e.g. case, case per 100,000)
:param incidence_plural_unit should be same as incidence_unit but plural (e.g. cases, cases per 100,000)
--- Keys ---
:param region_key is used to access a region's name
:param primary_incidence_key is used to access the disease incidence. incidence can be in case numbers, etc.
the data stored under the primary key is used to calculate the phase categorizations, sorting, etc.
:param secondary_incidence_key is used to access the disease incidence. incidence can be in case numbers, etc.
the data stored under the secondary key is used just for display, unless you override it
:param time_safe_key is used to access the number of days a region has been disease-free
:param postcode_key is used to access a region's postcode
:param percent_change_key is used to access the calculated percent change in incidence over a given timeframe
:param calc_with_secondary_incidence is used as an override, with index i = True forcing the calculations for the
category at index i to be done using the secondary incidence data.
--- Strings ---
:param last_updated_text is the label used to display the last updated date
:param last_updated_time is the actual time that the data was last updated. This generally should not be hardcoded
and should be dynamically set when the server launches.
:param legend_title is the title displayed above the legend
:param searchbar_placeholder is used as the placeholder for the region search bar
:param reset_button_text is used as the text for the reset button
:param region_name_tooltip is used to display the region name in the hovering tooltip
:param category_tooltip is used to display the region's category in the hovering tooltip
:param region_code_tooltip is used to display the region's code in the hovering tooltip
:param time_safe_tooltip is used to display the time a region has been "safe" in the hovering tooltip
:param primary_incidence_tooltip= is used to display incidence within one timeframe in the hovering tooltip
:param secondary_incidence_tooltip= is used to display incidence within another timeframe in the hovering tooltip
:param percent_change_tooltip= is used to display percent change between the timeframes in the hovering tooltip
"""
def __init__(self, title, pickle_file, labels, descriptions, lower_bounds, colors, **kwargs):
# Initialize required parameters
self.title = title
self.input_table = pd.read_pickle(pickle_file)
self.labels = labels
self.descriptions = descriptions
self.lower_bounds = lower_bounds
self.colors = colors
self.num_categories = len(self.labels)
# Read in kwargs
self.__read_config__(kwargs)
# Adjust lower bounds!
self.lower_bounds.append(self.input_table[self.primary_incidence_key].max() + 1)
# Initialize class members which will store calculation data
self.ratios = []
self.categorized_entries = []
self.display_regions = [pd.DataFrame()] * self.num_categories
self.sort_criterias = []
self.criteria_units = []
self.last_searched = ""
# Initialize data sources used for plotting
self.source = ColumnDataSource()
self.searched_source = ColumnDataSource()
self.__categorize_entries__()
self.__calculate_ratios__()
self.__init_sorting_criteria__()
self.__build_display_regions__()
self.__build_plot_data__()
def __read_config__(self, config):
# Initialize sizing stuff
self.aspect_ratio = config.get("aspect_ratio", DEFAULT_ASPECT_RATIO)
self.x_range = config.get("x_range", DEFAULT_X_RANGE)
self.y_range = config.get("y_range", DEFAULT_Y_RANGE)
self.min_space_x = config.get("min_space_x", DEFAULT_MIN_SPACE_X)
self.min_space_y = config.get("min_space_y", DEFAULT_MIN_SPACE_Y)
self.total_display_regions = config.get("total_display_regions", DEFAULT_TOTAL_DISPLAY_REGIONS)
self.min_display_regions = config.get("min_display_regions", DEFAULT_MIN_DISPLAY_REGIONS)
self.font_size = config.get("font_size", DEFAULT_FONT_SIZE)
self.font_size_str = str(self.font_size) + 'px'
# Initialize keys
self.region_key = config.get("region_key", DEFAULT_REGION_KEY)
self.primary_incidence_key = config.get("primary_incidence_key", DEFAULT_PRIMARY_INCIDENCE_KEY)
self.secondary_incidence_key = config.get("secondary_incidence_key", DEFAULT_SECONDARY_INCIDENCE_KEY)
self.time_safe_key = config.get("time_safe_key", DEFAULT_TIME_SAFE_KEY)
self.postcode_key = config.get("postcode_key", DEFAULT_POSTCODE_KEY)
self.percent_change_key = config.get("percent_change_key", DEFAULT_PERCENT_CHANGE_KEY)
# Initialize unit stuff
self.region_type = config.get("region_type", DEFAULT_REGION_TYPE)
self.time_safe_unit = config.get("time_safe_unit", DEFAULT_TIME_SAFE_UNIT)
self.time_safe_plural_unit = config.get("time_safe_plural_unit", DEFAULT_TIME_SAFE_PLURAL_UNIT)
self.incidence_unit = config.get("incidence_unit", DEFAULT_INCIDENCE_UNIT)
self.incidence_plural_unit = config.get("incidence_plural_unit", DEFAULT_INCIDENCE_PLURAL_UNIT)
self.calc_with_secondary_incidence = config.get("calc_with_secondary_incidence", [False] * self.num_categories)
# Initialize strings
self.last_updated_text = config.get("last_updated_text", DEFAULT_LAST_UPDATED_TEXT)
self.last_updated_time = config.get("last_updated_time")
self.legend_title = config.get("legend_title", DEFAULT_LEGEND_TITLE)
self.searchbar_placeholder = config.get("searchbar_placeholder", DEFAULT_SEARCHBAR_PLACEHOLDER)
self.reset_button_text = config.get("reset_button_text", DEFAULT_RESET_BUTTON_TEXT)
self.region_name_tooltip = config.get("region_name_tooltip", DEFAULT_REGION_NAME_TOOLTIP)
self.category_tooltip = config.get("category_tooltip", DEFAULT_CATEGORY_TOOLTIP)
self.region_code_tooltip = config.get("region_code_tooltip", DEFAULT_REGION_CODE_TOOLTIP)
self.time_safe_tooltip = config.get("time_safe_tooltip", DEFAULT_TIME_SAFE_TOOLTIP)
self.primary_incidence_tooltip = config.get("primary_incidence_tooltip", DEFAULT_PRIMARY_INCIDENCE_TOOLTIP)
self.secondary_incidence_tooltip = config.get("secondary_incidence_tooltip",
DEFAULT_SECONDARY_INCIDENCE_TOOLTIP)
self.percent_change_tooltip = config.get("percent_change_tooltip", DEFAULT_PERCENT_CHANGE_TOOLTIP)
def __categorize_entries__(self):
for i in range(self.num_categories):
incidence_key = self.__get_incidence_key__(i)
self.categorized_entries.append(
self.input_table.loc[
# Add region to category if incidence is greater than or equal to the category's lower bound,
(self.input_table[incidence_key] >= self.lower_bounds[i]) &
(
# AND if less than the next category's lower bound,
(self.input_table[incidence_key] < self.lower_bounds[i + 1]) |
# OR, when next lower bound is equal to the current lower bound (e.g. two green zones),
# if equal to the next lower bound
((self.lower_bounds[i] == self.lower_bounds[i + 1]) &
(self.input_table[incidence_key] == self.lower_bounds[i + 1]))
)
]
)
# Remove regions that may fit into multiple categories, favoring the best category
for i in reversed(range(1, self.num_categories)):
self.categorized_entries[i] = \
pd.merge(self.categorized_entries[i], self.categorized_entries[i - 1], indicator=True, how='outer') \
.query('_merge=="left_only"') \
.drop('_merge', axis=1)
def __calculate_ratios__(self):
num_entries = len(self.input_table)
for i in range(self.num_categories):
self.ratios.append(len(self.categorized_entries[i]) / num_entries)
def __init_sorting_criteria__(self):
for i in range(self.num_categories):
if i == 0:
self.sort_criterias.append(self.time_safe_key)
self.criteria_units.append(self.time_safe_unit)
else:
self.sort_criterias.append(self.__get_incidence_key__(i))
self.criteria_units.append(self.incidence_unit)
def __get_incidence_key__(self, category_index):
if self.calc_with_secondary_incidence[category_index]:
return self.secondary_incidence_key
return self.primary_incidence_key
def __get_num_display_regions_for_category__(self, category_index):
return max(math.floor(self.total_display_regions * self.ratios[category_index]), self.min_display_regions)
def __build_display_regions__(self):
for i in range(self.num_categories):
sort_ascending = True
if self.sort_criterias[i] == self.time_safe_key:
sort_ascending = False
# add top regions
sorted_entries = self.categorized_entries[i] \
.sort_values(by=self.sort_criterias[i], axis=0, ascending=sort_ascending)
self.display_regions[i] = sorted_entries.head(self.__get_num_display_regions_for_category__(i))
# replace the tail with the worst region
if len(sorted_entries) > self.__get_num_display_regions_for_category__(i):
self.display_regions[i] = self.display_regions[i].head(-1)
self.display_regions[i] = self.display_regions[i].append(sorted_entries.tail(1))
def __add_searched_region__(self, query):
# Set last searched
self.last_searched = query
# Add searched region to appropriate display_regions element, then sort
search_type = self.postcode_key if query.isnumeric() else self.region_key
for i in range(self.num_categories):
searched_region_entry = \
self.categorized_entries[i][self.categorized_entries[i][search_type] == query]
if (query != "") and \
(len(searched_region_entry) != 0) and \
(len(self.display_regions[i][self.display_regions[i][search_type] == query]) == 0):
self.display_regions[i] = self.display_regions[i].append(searched_region_entry)
self.display_regions[i] = self.display_regions[i] \
.sort_values(self.sort_criterias[i],
ascending=(self.sort_criterias[i] == self.__get_incidence_key__(i)))
break
@staticmethod
def __new_plot_data_map__():
return {"line_x_points": [],
"line_y_points": [],
"line_color": [],
"text_x": [],
"text_y": [],
"text": [],
"region_name": [],
"category": [],
"postcode": [],
"time_safe": [],
"primary_incidence": [],
"secondary_incidence": [],
"percent_change": []}
def __build_plot_data__(self):
box_top_y = 1
last_text_y = float('inf')
plot_data = self.__new_plot_data_map__()
searched_plot_data = self.__new_plot_data_map__()
for category_i in range(len(self.ratios)):
curr_top = self.display_regions[category_i]
sort_criteria = self.sort_criterias[category_i]
criteria_unit = self.criteria_units[category_i]
box_size = self.ratios[category_i]
if box_size == 0:
continue
# Iterate through each region, calculate their plot positions with padding
# Also, process the data fields, allowing for empty defaults on the optional fields
top_region_datum = curr_top[sort_criteria].max()
bot_region_datum = curr_top[sort_criteria].min()
padding = box_size * 0.1
for region_i in range(len(curr_top[self.region_key])):
region = curr_top[self.region_key].values[region_i]
datum = curr_top[self.sort_criterias[category_i]].values[region_i]
line_y_relative = ((datum - bot_region_datum) / (top_region_datum - bot_region_datum)) \
if top_region_datum != bot_region_datum else 0.5
line_y = box_top_y - ((box_size - (padding * 2)) * line_y_relative) - padding
# Calculate necessary vertical adjustments to line and text
text_y = line_y
if last_text_y - line_y < self.min_space_y:
text_y = last_text_y - self.min_space_y
line_x_points = [1, 1.25, 1.25, 1.5]
line_y_points = [line_y, line_y, text_y, text_y]
last_text_y = text_y
self.__attempt_adjust_y_range__(last_text_y)
# Store plot data for post-processing
plot_data["line_x_points"].append(line_x_points)
plot_data["line_y_points"].append(line_y_points)
plot_data["line_color"].append(self.colors[category_i])
plot_data["text_x"].append(line_x_points[3])
plot_data["text_y"].append(text_y)
plot_data["text"].append([f"{region}: {datum} {self.__determine_unit__(criteria_unit, datum)}"])
plot_data["region_name"].append(region)
plot_data["category"].append(self.labels[category_i])
plot_data["time_safe"].append(curr_top[self.time_safe_key].values[region_i])
plot_data["primary_incidence"].append(curr_top[self.primary_incidence_key].values[region_i])
# Add optional values (if they don't exist, add None to ensure the ColumnDataSource doesn't complain)
plot_data["postcode"].append(
curr_top[self.postcode_key].values[region_i]
if self.postcode_key in curr_top else None)
plot_data["secondary_incidence"].append(
curr_top[self.secondary_incidence_key].values[region_i]
if self.secondary_incidence_key in curr_top else None)
plot_data["percent_change"].append(
'{:.1%}'.format(curr_top[self.percent_change_key].values[region_i] / 100)
if self.percent_change_key in curr_top else None)
box_top_y -= box_size
# Postprocessing to adjust lines horizontally, ensuring no overlapping branches
self.__adjust_branches__(data=plot_data, direction="right")
# Isolate searched region
for category_i in reversed(range(len(plot_data["postcode"]))):
if (plot_data["region_name"][category_i] == self.last_searched) or \
(plot_data["postcode"][category_i] == self.last_searched):
for key in plot_data:
searched_plot_data[key] = [plot_data[key][category_i]]
del plot_data[key][category_i]
break
self.source.data = plot_data
self.searched_source.data = searched_plot_data
def __determine_unit__(self, unit, quantity):
if quantity == 1:
return unit
if unit == self.time_safe_unit:
return self.time_safe_plural_unit
return self.incidence_plural_unit
def __draw_phase_boxes__(self, plot):
box_top_y = 1
box_data = self.__new_plot_data_map__()
box_data["box_top_y"] = []
last_text_y = 99999
for i in range(self.num_categories):
box_size = self.ratios[i]
box_middle = box_top_y - (box_size / 2)
if box_size == 0:
# add dummy entries, since there should be no box, line, nor text rendered for this category
for _, v in box_data.items():
v.append(None)
continue
# add data for post-processing
box_data["box_top_y"].append(box_top_y)
box_data["text_y"].append(box_middle)
box_data["text"].append([f"{self.labels[i]}\n{'{:.1%}'.format(box_size)}"])
if box_size >= self.min_space_y * 2.5:
# if phase is large enough, render it in the center of the box
box_data["text_x"].append(0)
box_data["line_x_points"].append(None)
box_data["line_y_points"].append(None)
else:
# small phase, need to render text on a branch
# need to multiply the minimum space since the phase box text is two lines
min_space_multiplier = 2
# override if last label will overlap with the default text location (box's middle)
if (last_text_y - box_middle) / min_space_multiplier < self.min_space_y:
box_data["text_y"][i] = last_text_y - (self.min_space_y * min_space_multiplier)
box_data["text_x"].append(-1.5)
box_data["line_x_points"].append([-1.475, -1.25, -1.25, -1])
box_data["line_y_points"].append([box_data["text_y"][i],
box_data["text_y"][i],
box_middle,
box_middle])
last_text_y = box_data["text_y"][i]
box_top_y -= box_size
self.__attempt_adjust_y_range__(last_text_y)
# Post-process to ensure labels and branches don't overlap
self.__adjust_branches__(box_data, "left")
# Render boxes and labels
for i in range(len(box_data["box_top_y"])):
# skip dummy entries
if box_data["box_top_y"][i] is None:
continue
# if there is a line, that means the label is offset. in that case, render a line
is_offset = box_data["line_x_points"][i] is not None
if is_offset:
plot.line(x=box_data["line_x_points"][i], y=box_data["line_y_points"][i], color=self.colors[i])
# Render box and text, y_offset ensures the line points to text and not the empty space between the text
plot.vbar(0, 2, box_data["box_top_y"][i], fill_color=self.colors[i], line_color="#000000")
plot.text(x=box_data["text_x"][i], y=box_data["text_y"][i],
text=box_data["text"][i],
y_offset=(self.font_size * 0.66 if is_offset else 0),
text_baseline="middle",
text_align=("right" if is_offset else "center"),
text_font_size=self.font_size_str)
# This function expands the y_range to prevent text from being cut off.
# If the inputted y_value is outside of the current y_range, it will adjust such that the new
# y_value is at the bottom of the graph, then add padding equal to the top padding
def __attempt_adjust_y_range__(self, y_value):
y_padded = y_value - (self.y_range[1] - 1)
if y_padded < self.y_range[0]:
self.y_range = (y_padded, self.y_range[1])
def __draw_glyphs__(self, plot):
# Add lines
line = MultiLine(xs="line_x_points", ys="line_y_points", line_color="line_color")
plot.add_glyph(self.source, line)
plot.add_glyph(self.searched_source, line)
# Add text
text = Text(x="text_x", y="text_y", text="text",
y_offset=self.font_size / 2,
text_font_style="normal", text_font_size=self.font_size_str)
text_renderer = plot.add_glyph(self.source, text)
searched_text = Text(x="text_x", y="text_y", text="text",
y_offset=self.font_size / 2,
text_font_style="bold", text_font_size=self.font_size_str)
searched_text_renderer = plot.add_glyph(self.searched_source, searched_text)
# add the hover functionality, filtering out optional fields
tooltips = [(f"{self.region_name_tooltip}", "@{region_name}")]
if self.postcode_key in self.input_table.columns:
tooltips.append((f"{self.region_code_tooltip}", "@{postcode}"))
tooltips.append((f"{self.category_tooltip}", "@{category}"))
tooltips.append((f"{self.time_safe_tooltip}", "@{time_safe}"))
tooltips.append((f"{self.primary_incidence_tooltip}", "@{primary_incidence}"))
if self.secondary_incidence_key in self.input_table.columns:
tooltips.append((f"{self.secondary_incidence_tooltip}", "@{secondary_incidence}"))
if self.percent_change_key in self.input_table.columns:
tooltips.append((f"{self.percent_change_tooltip}", "@{percent_change}"))
text_hover = HoverTool(renderers=[text_renderer, searched_text_renderer], tooltips=tooltips,
attachment="below", point_policy="follow_mouse")
plot.add_tools(text_hover)
def __adjust_branches__(self, data, direction):
# Adjusts "branches" horizontally to ensure no overlaps
consecutive_branches = 0
for i in reversed(range(len(data["line_x_points"]))):
# Skip if no line exists (this occurs when drawing the phase boxes)
if data["line_x_points"][i] is None:
continue
# If branched or if prior line was branched, adjust according to direction
is_branched = data["line_y_points"][i][1] != data["line_y_points"][i][2]
if is_branched | consecutive_branches != 0:
adjustment = self.min_space_x * consecutive_branches
if direction == "left":
adjustment *= -1
data["line_x_points"][i][0] += adjustment
else:
data["line_x_points"][i][3] += adjustment
data["line_x_points"][i][1] += adjustment
data["line_x_points"][i][2] += adjustment
data["text_x"][i] += adjustment
consecutive_branches += 1
if not is_branched:
consecutive_branches = 0
def __generate_plot__(self):
# Initialize plot
plot = figure(
name=TEMPLATE_PLOT_IDENTIFIER,
aspect_ratio=self.aspect_ratio,
sizing_mode="scale_both",
x_range=self.x_range,
y_range=self.y_range,
toolbar_location=None,
align="center"
)
plot.xaxis.visible = False
plot.yaxis.visible = False
plot.grid.visible = False
self.__draw_phase_boxes__(plot)
self.__draw_glyphs__(plot)
return plot
def __generate_inputs__(self):
# Callbacks for the searchbar and reset button
def handle_search(attr, old, new):
self.__add_searched_region__(new)
self.__build_plot_data__()
def handle_reset(event):
searchbar.value = ""
self.last_searched = ""
self.__build_display_regions__()
self.__build_plot_data__()
# Builds input with autocompletion, adding in postcodes if they exist
completions = []
completions.extend(self.input_table[self.region_key].tolist())
if self.postcode_key in self.input_table.columns:
completions.extend(self.input_table[self.input_table[self.postcode_key] != 0][self.postcode_key].tolist())
searchbar = AutocompleteInput(
completions=completions,
min_characters=5,
case_sensitive=False,
placeholder=self.searchbar_placeholder
)
searchbar.on_change('value', handle_search)
# Reset button
reset_button = Button(
label=self.reset_button_text
)
reset_button.on_click(handle_reset)
return column(reset_button, searchbar, sizing_mode="stretch_width", name=TEMPLATE_INPUTS_IDENTIFIER)
def render(self):
# Set template variables
curdoc().template_variables["title"] = self.title
curdoc().template_variables["last_updated_text"] = self.last_updated_text
curdoc().template_variables["last_updated_time"] = self.last_updated_time
curdoc().template_variables["legend_title"] = self.legend_title
curdoc().template_variables["colors"] = self.colors
curdoc().template_variables["descriptions"] = self.descriptions
curdoc().template_variables["labels"] = self.labels
# Add figures to document
plot = self.__generate_plot__()
inputs = self.__generate_inputs__()
curdoc().add_root(plot)
curdoc().add_root(inputs)