forked from ainrichman/Peppa-Facial-Landmark-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrecon_dataset.py
47 lines (43 loc) · 1.68 KB
/
recon_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import json
import os
import cv2
import numpy as np
from tqdm import tqdm
def do(filename):
gogo = json.load(open(filename))
result = []
for data in tqdm(gogo):
image_path = data['image_path'].replace("\\", "/")
landmarks = np.array(data['keypoints'])
bbox = np.array(data['bbox'])
img = cv2.imread(image_path)
img_h, img_w = img.shape[0], img.shape[1]
center = np.array([bbox[2] + bbox[0], bbox[1] + bbox[3]]) / 2
w, h = bbox[2] - bbox[0], bbox[3] - bbox[1]
ex_w, ex_h = np.array([w, h]) * [0.4, 0.6] / 2
x1 = center[0] - w / 2 - ex_w * 2
y1 = center[1] - h / 2 - ex_h * 2
x2 = center[0] + w / 2 + ex_w * 2
y2 = center[1] + h / 2 + ex_h * 2
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(img_w, x2)
y2 = min(img_h, y2)
new_bbox = np.array([x1, y1, x2, y2]).astype(np.int)
landmarks = landmarks - new_bbox[0:2]
bbox[0:2] = bbox[0:2] - new_bbox[0:2]
bbox[2:4] = bbox[2:4] - new_bbox[0:2]
data['bbox'] = bbox.tolist()
data['keypoints'] = landmarks.tolist()
img = img[new_bbox[1]:new_bbox[3], new_bbox[0]:new_bbox[2]]
output_path = os.path.join("/".join(image_path.split("/")[0:-4]), image_path.split("/")[-4] + "_Output",
"/".join(image_path.split("/")[-3:]))
data['image_path'] = output_path
output_dir = "/".join(output_path.split("/")[0:-1])
if not os.path.exists(output_dir):
os.makedirs(output_dir)
cv2.imwrite(output_path, img)
result.append(data)
json.dump(result, open(filename, "w"))
do("train.json")
do("val.json")