-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBPB.py
598 lines (506 loc) · 28.1 KB
/
BPB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import base64
import json
import requests
import numpy as np
import pickle
import os
from sklearn.linear_model import LogisticRegression
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
# initialize functions. I use global variables bc opening pkl files is slow and if we put it
# in a for loop, it literally takes 10+ hours to run a season
win_list_2016 = pickle.load(open('win_list_2016.pkl', 'rb'))
win_list_2017 = pickle.load(open('win_list_2017.pkl', 'rb'))
win_list_2018 = pickle.load(open('win_list_2018.pkl', 'rb'))
win_list_2019 = pickle.load(open('win_list_2019.pkl', 'rb'))
games_response_2016 = pickle.load(open('games_response_2016.pkl', 'rb'))
games_response_2017 = pickle.load(open('games_response_2017.pkl', 'rb'))
games_response_2018 = pickle.load(open('games_response_2018.pkl', 'rb'))
games_response_2019 = pickle.load(open('games_response_2019.pkl', 'rb'))
def initialize_games_call_response(season):
if(season == 2016):
games_response = games_response_2016
elif(season == 2017):
games_response = games_response_2017
elif(season == 2018):
games_response = games_response_2018
elif(season == 2019):
games_response = games_response_2019
return games_response
# I think we can delete lineups and just keep the all_lineups
lineups1 = pickle.load(open('lineups2.pkl', 'rb'))
lineups2 = pickle.load(open('lineups1.pkl', 'rb'))
all_lineups = {**lineups1, **lineups2}
team_stats_2016 = pickle.load(open('team_stats_2016.pkl', 'rb'))
team_stats_2017 = pickle.load(open('team_stats_2017.pkl', 'rb'))
team_stats_2018 = pickle.load(open('team_stats_2018.pkl', 'rb'))
team_stats_2019 = pickle.load(open('team_stats_2019.pkl', 'rb'))
def initialize_team_stats(season):
if(season == 2016):
team_stats = team_stats_2016
elif(season == 2017):
team_stats = team_stats_2017
elif(season == 2018):
team_stats = team_stats_2018
elif(season == 2019):
team_stats = team_stats_2019
return team_stats
player_stats_2016 = pickle.load(open('player_stats_2016.pkl', 'rb'))
player_stats_2017 = pickle.load(open('player_stats_2017.pkl', 'rb'))
player_stats_2018 = pickle.load(open('player_stats_2018.pkl', 'rb'))
player_stats_2019 = pickle.load(open('player_stats_2019.pkl', 'rb'))
def initialize_player_stats(season):
if(season == 2016):
player_stats = player_stats_2016
elif(season == 2017):
player_stats = player_stats_2017
elif(season == 2018):
player_stats = player_stats_2018
elif(season == 2019):
player_stats = player_stats_2019
return player_stats
# ========================================================================================================================================================
# Collect venue win percentage in a given season, team, and id
def venue_win(venue_id, team_id, season):
games_response = initialize_games_call_response(season)
wins = 0
losses = 0
# Cycle through all games
for i in range(len(games_response['games'])):
# If venue matches and team id is the away team :
if(games_response['games'][i]['schedule']['venue']['id'] == venue_id and games_response['games'][i]['schedule']['awayTeam']['id'] == team_id):
# If the away team won
if(games_response['games'][i]['score']['awayScoreTotal'] > games_response['games'][i]['score']['homeScoreTotal']):
wins += 1
else:
losses += 1
# If venue matches and team id is the home team :
if(games_response['games'][i]['schedule']['venue']['id'] == venue_id and games_response['games'][i]['schedule']['homeTeam']['id'] == team_id):
# If the home team won
if(games_response['games'][i]['score']['awayScoreTotal'] < games_response['games'][i]['score']['homeScoreTotal']):
wins += 1
else:
losses += 1
# If the team has never played at that venue, return 50%
if(wins == 0 and losses == 0):
return 0.5
else:
return wins / (wins + losses)
# TEAM STATS
# List of all team stats we are collecting, 4 categories
team_stats_batting = ['atBats', 'runs', 'hits', 'secondBaseHits', 'thirdBaseHits', 'homeruns', 'runsBattedIn', 'earnedRuns',
'unearnedRuns', 'batterWalks', 'batterSwings', 'batterStrikes', 'batterStrikesFoul', 'batterStrikesMiss', 'batterStrikesLooking',
'batterGroundBalls', 'batterFlyBalls', 'batterLineDrives', 'batterStrikeouts', 'batter2SeamFastballs', 'batter4SeamFastballs',
'batterCurveballs', 'batterChangeups', 'batterCutters', 'batterSliders', 'batterSinkers', 'batterSplitters', 'leftOnBase',
'opponentsLeftOnBase', 'stolenBases', 'caughtBaseSteals', 'batterStolenBasePct', 'battingAvg', 'batterOnBasePct',
'batterSluggingPct', 'batterOnBasePlusSluggingPct', 'batterIntentionalWalks', 'hitByPitch', 'batterSacrificeBunts',
'batterSacrificeFlies', 'totalBases', 'extraBaseHits', 'batterDoublePlays', 'batterTriplePlays', 'batterTagOuts',
'batterForceOuts', 'batterPutOuts', 'batterGroundOuts', 'batterFlyOuts', 'batterGroundOutToFlyOutRatio', 'pitchesFaced',
'plateAppearances', 'opponentAtBats']
team_stats_pitching = ['earnedRunAvg', 'inningsPitched', 'hitsAllowed', 'secondBaseHitsAllowed', 'thirdBaseHitsAllowed',
'runsAllowed', 'earnedRunsAllowed', 'homerunsAllowed', 'pitcherWalks', 'pitcherSwings', 'pitcherStrikes', 'pitcherStrikesFoul',
'pitcherStrikesMiss', 'pitcherStrikesLooking', 'pitcherGroundBalls', 'pitcherFlyBalls', 'pitcherLineDrives',
'pitcherSacrificeBunts', 'pitcher2SeamFastballs', 'pitcher4SeamFastballs', 'pitcherCurveballs', 'pitcherChangeups',
'pitcherCutters', 'pitcherSliders', 'pitcherSinkers', 'pitcherSplitters', 'pitcherSacrificeFlies', 'pitcherStrikeouts',
'pitchingAvg', 'walksAndHitsPerInningPitched', 'shutouts', 'battersHit', 'pitcherIntentionalWalks', 'pitcherGroundOuts',
'pitcherFlyOuts', 'pitcherWildPitches', 'balks', 'pitcherStolenBasesAllowed', 'pitcherCaughtStealing', 'pickoffs',
'pickoffAttempts', 'totalBattersFaced', 'pitchesThrown', 'pitcherGroundOutToFlyOutRatio', 'pitcherOnBasePct',
'pitcherSluggingPct', 'pitcherOnBasePlusSluggingPct', 'strikeoutsPer9Innings', 'walksAllowedPer9Innings',
'hitsAllowedPer9Innings', 'strikeoutsToWalksRatio', 'pitchesPerInning']
team_stats_fielding = ['inningsPlayed', 'totalChances', 'fielderTagOuts', 'fielderForceOuts', 'fielderPutOuts', 'assists',
'errors', 'fielderDoublePlays', 'fielderTriplePlays', 'fielderStolenBasesAllowed', 'fielderCaughtStealing', 'fielderStolenBasePct',
'passedBalls', 'fielderWildPitches', 'fieldingPct', 'defenceEfficiencyRatio', 'outsFaced']
team_stats_standings = ['wins', 'losses', 'winPct', 'gamesBack', 'runsFor', 'runsAgainst', 'runDifferential']
# Helper function : given team stats (all teams), and an index, return an array of floats of all the stats of that team
def append_team_stats(stats):
team_stats = []
# Batting stats
for b in range(len(team_stats_batting)):
team_stats.append(stats['batting'][team_stats_batting[b]])
# Pitching stats
for p in range(len(team_stats_pitching)):
team_stats.append(stats['pitching'][team_stats_pitching[p]])
# Fielding stats
for f in range(len(team_stats_fielding)):
team_stats.append(stats['fielding'][team_stats_fielding[f]])
# Standings
for s in range(len(team_stats_standings)):
team_stats.append(stats['standings'][team_stats_standings[s]])
return team_stats
# This function returns the away minus home team stats given a game ID
def collect_team_stats(game_id, season):
lineup = all_lineups[game_id]
team_stats = initialize_team_stats(season)
away_team_id = lineup['game']['awayTeam']['id']
home_team_id = lineup['game']['homeTeam']['id']
away_stats = []
home_stats = []
# Cycle thru all teams
for i in range(len(team_stats['teamStatsTotals'])):
# If we find the away team id matches
if(away_team_id == team_stats['teamStatsTotals'][i]['team']['id']):
away_stats = append_team_stats(team_stats['teamStatsTotals'][i]['stats'])
# If we find the home team id matches
elif(home_team_id == team_stats['teamStatsTotals'][i]['team']['id']):
home_stats = append_team_stats(team_stats['teamStatsTotals'][i]['stats'])
# Create and return away minus home array
away_minus_home = []
for i in range(len(away_stats)):
away_minus_home.append(away_stats[i] - home_stats[i])
return away_minus_home
# Player stats we collect, 4 categories
player_stats_batting = ['atBats', 'batter2SeamFastballs', 'batter4SeamFastballs', 'batterChangeups',
'batterCurveballs', 'batterCutters', 'batterDoublePlays', 'batterFlyBalls', 'batterFlyOuts', 'batterForceOuts',
'batterGroundBalls', 'batterGroundOuts', 'batterGroundOutToFlyOutRatio', 'batterIntentionalWalks', 'batterLineDrives',
'batterOnBasePct', 'batterOnBasePlusSluggingPct', 'batterPutOuts', 'batterSacrificeBunts', 'batterSacrificeFlies',
'batterSinkers', 'batterSliders', 'batterSluggingPct', 'batterSplitters', 'batterStolenBasePct', 'batterStrikeouts',
'batterStrikes', 'batterStrikesFoul', 'batterStrikesLooking', 'batterStrikesMiss', 'batterSwings', 'batterTagOuts',
'batterTriplePlays', 'batterWalks', 'battingAvg', 'caughtBaseSteals', 'earnedRuns', 'extraBaseHits', 'hitByPitch',
'hits', 'homeruns', 'leftOnBase', 'pitchesFaced', 'plateAppearances', 'runs', 'runsBattedIn', 'secondBaseHits', 'stolenBases',
'thirdBaseHits', 'totalBases', 'unearnedRuns']
player_stats_fielding = ['inningsPlayed', 'totalChances', 'fielderTagOuts', 'fielderForceOuts', 'fielderPutOuts', 'outsFaced',
'assists', 'errors', 'fielderDoublePlays', 'fielderTriplePlays', 'fielderStolenBasesAllowed', 'fielderCaughtStealing',
'fielderStolenBasePct', 'passedBalls', 'fielderWildPitches', 'fieldingPct', 'rangeFactor']
player_stats_pitching = ['wins', 'losses', 'earnedRunAvg', 'saves', 'saveOpportunities', 'inningsPitched', 'hitsAllowed',
'secondBaseHitsAllowed', 'thirdBaseHitsAllowed', 'runsAllowed', 'earnedRunsAllowed', 'homerunsAllowed', 'pitcherWalks',
'pitcherSwings', 'pitcherStrikes', 'pitcherStrikesFoul', 'pitcherStrikesMiss', 'pitcherStrikesLooking', 'pitcherGroundBalls',
'pitcherFlyBalls', 'pitcherLineDrives', 'pitcher2SeamFastballs', 'pitcher4SeamFastballs', 'pitcherCurveballs', 'pitcherChangeups',
'pitcherCutters', 'pitcherSliders', 'pitcherSinkers', 'pitcherSplitters', 'pitcherSacrificeBunts', 'pitcherSacrificeFlies',
'pitcherStrikeouts', 'pitchingAvg', 'walksAndHitsPerInningPitched', 'completedGames', 'shutouts', 'battersHit',
'pitcherIntentionalWalks', 'gamesFinished', 'holds', 'pitcherDoublePlays', 'pitcherTriplePlays', 'pitcherGroundOuts',
'pitcherFlyOuts', 'pitcherWildPitches', 'balks', 'pitcherStolenBasesAllowed', 'pitcherCaughtStealing', 'pickoffAttempts',
'pickoffs', 'totalBattersFaced', 'pitchesThrown', 'winPct', 'pitcherGroundOutToFlyOutRatio', 'pitcherOnBasePct',
'pitcherSluggingPct', 'pitcherOnBasePlusSluggingPct', 'strikeoutsPer9Innings', 'walksAllowedPer9Innings', 'hitsAllowedPer9Innings',
'strikeoutsToWalksRatio', 'pitchesPerInning', 'pitcherAtBats']
player_stats_miscellaneous = ['gamesStarted']
# We will use the following dictionary and array to help order the positions
position_dictionary = dict()
position_dictionary['1B'] = 0
position_dictionary['2B'] = 1
position_dictionary['3B'] = 2
position_dictionary['BO1'] = 3
position_dictionary['BO2'] = 4
position_dictionary['BO3'] = 5
position_dictionary['BO4'] = 6
position_dictionary['BO5'] = 7
position_dictionary['BO6'] = 8
position_dictionary['BO7'] = 9
position_dictionary['BO8'] = 10
position_dictionary['BO9'] = 11
position_dictionary['C'] = 12
position_dictionary['CF'] = 13
position_dictionary['DH'] = 14
position_dictionary['LF'] = 15
position_dictionary['P'] = 16
position_dictionary['RF'] = 17
position_dictionary['SS'] = 18
position_array = ['1B', '2B', '3B', 'BO1', 'BO2', 'BO3', 'BO4', 'BO5', 'BO6', 'BO7',
'BO8', 'BO9', 'C', 'CF', 'DH', 'LF', 'P', 'RF', 'SS']
# Away = 0, Home = 1
# Takes in a lineup call, returns the player ids for one team in an array in the order above. If player is null or it returns 0
def collect_player_ids(lineup, away, actual_or_expected):
ids = [0]*19
for i in range(len(lineup['teamLineups'][away][actual_or_expected]['lineupPositions'])):
if(lineup['teamLineups'][away][actual_or_expected]['lineupPositions'][i]['player'] is not None and lineup['teamLineups'][away][actual_or_expected]['lineupPositions'][i]['position'] != 'OF'):
ids[position_dictionary[lineup['teamLineups'][away][actual_or_expected]['lineupPositions'][i]['position']]] = lineup['teamLineups'][away][actual_or_expected]['lineupPositions'][i]['player']['id']
return ids
# Given a list of player ids, returns a list of 19 dictionaries (0 if null)
# We need away to determine the team of the player in question (one player can play for more than one team in a season)
def collect_dictionaries(lineup, away, player_stats, player_ids):
dictionary_array = []
player_team_id = lineup['teamLineups'][away]['team']['id']
for i in range(len(player_ids)):
player_found = False
for j in range(len(player_stats['playerStatsTotals'])):
if(player_stats['playerStatsTotals'][j]['player']['id'] == player_ids[i] and player_stats['playerStatsTotals'][j]['team']['id'] == player_team_id):
dictionary_array.append(player_stats['playerStatsTotals'][j]['stats'])
player_found = True
if(player_found == False):
dictionary_array.append(0)
return dictionary_array
# This function converts the dictionaries to float arrays.
# If the player is null, it fills it with the average for that position and year
# And divides the stats by the number of games played by that specific player
def dictionary_to_float(dictionaries, season):
float_array = []
for i in range(len(dictionaries)):
position = position_array[i]
if(dictionaries[i] == 0):
float_array += pickle.load(open('average_' + position + '_' + str(season) + '.pkl', 'rb'))
else:
games_played = dictionaries[i]['gamesPlayed']
if(games_played == 0):
games_played = 1
for b in range(len(player_stats_batting)):
float_array.append(dictionaries[i]['batting'][player_stats_batting[b]] / games_played)
for f in range(len(player_stats_fielding)):
float_array.append(dictionaries[i]['fielding'][player_stats_fielding[f]] / games_played)
for m in range(len(player_stats_miscellaneous)):
float_array.append(dictionaries[i]['miscellaneous'][player_stats_miscellaneous[m]] / games_played)
if(position == 'P'):
if('pitching' in dictionaries[i]):
for p in range(len(player_stats_pitching)):
float_array.append(dictionaries[i]['pitching'][player_stats_pitching[p]] / games_played)
else:
for p in range(len(player_stats_pitching)):
float_array.append(pickle.load(open('average_P_' + str(season) + '.pkl', 'rb'))[len(player_stats_batting) + len(player_stats_fielding) + len(player_stats_miscellaneous) + p])
return float_array
# PLAYER STATS
# Away = 0, Home = 1
# actual_or_expected is just a string 'actual' or 'expected'
def collect_player_stats(game_id, season, actual_or_expected):
player_stats = initialize_player_stats(season)
lineup = all_lineups[game_id]
away_player_ids = collect_player_ids(lineup, 0, actual_or_expected)
home_player_ids = collect_player_ids(lineup, 1, actual_or_expected)
away_dictionaries = collect_dictionaries(lineup, 0, player_stats, away_player_ids)
home_dictionaries = collect_dictionaries(lineup, 1, player_stats, home_player_ids)
away_floats = dictionary_to_float(away_dictionaries, season)
home_floats = dictionary_to_float(home_dictionaries, season)
away_minus_home = []
for i in range(len(away_floats)):
away_minus_home.append(away_floats[i] - home_floats[i])
return away_minus_home
# collect_player_stats(48847, 2019, 'actual')
def create_training_set():
training_set = []
for i in range(len(games_response_2016['games'])):
print('2016 GAME ', i)
venue_id = games_response_2016['games'][i]['schedule']['venue']['id']
away_team_id = games_response_2016['games'][i]['schedule']['awayTeam']['id']
home_team_id = games_response_2016['games'][i]['schedule']['homeTeam']['id']
game_id = games_response_2016['games'][i]['schedule']['id']
win_differential = venue_win(venue_id, away_team_id, 2016) - venue_win(venue_id, home_team_id, 2016)
team_stats = collect_team_stats(game_id, 2016)
player_stats = collect_player_stats(game_id, 2016, 'actual')
training_single_game = []
training_single_game.append(win_differential)
training_single_game += team_stats
training_single_game += player_stats
training_set.append(training_single_game)
for i in range(len(games_response_2017['games'])):
print('2017 GAME ', i)
venue_id = games_response_2017['games'][i]['schedule']['venue']['id']
away_team_id = games_response_2017['games'][i]['schedule']['awayTeam']['id']
home_team_id = games_response_2017['games'][i]['schedule']['homeTeam']['id']
game_id = games_response_2017['games'][i]['schedule']['id']
win_differential = venue_win(venue_id, away_team_id, 2017) - venue_win(venue_id, home_team_id, 2017)
team_stats = collect_team_stats(game_id, 2017)
player_stats = collect_player_stats(game_id, 2017, 'actual')
training_single_game = []
training_single_game.append(win_differential)
training_single_game += team_stats
training_single_game += player_stats
training_set.append(training_single_game)
for i in range(len(games_response_2018['games'])):
print('2018 GAME ', i)
venue_id = games_response_2018['games'][i]['schedule']['venue']['id']
away_team_id = games_response_2018['games'][i]['schedule']['awayTeam']['id']
home_team_id = games_response_2018['games'][i]['schedule']['homeTeam']['id']
game_id = games_response_2018['games'][i]['schedule']['id']
win_differential = venue_win(venue_id, away_team_id, 2018) - venue_win(venue_id, home_team_id, 2018)
team_stats = collect_team_stats(game_id, 2018)
player_stats = collect_player_stats(game_id, 2018, 'actual')
training_single_game = []
training_single_game.append(win_differential)
training_single_game += team_stats
training_single_game += player_stats
training_set.append(training_single_game)
return training_set
def create_test_set():
test_set = []
for i in range(len(games_response_2019['games'])):
print('2019 GAME ', i)
venue_id = games_response_2019['games'][i]['schedule']['venue']['id']
away_team_id = games_response_2019['games'][i]['schedule']['awayTeam']['id']
home_team_id = games_response_2019['games'][i]['schedule']['homeTeam']['id']
game_id = games_response_2019['games'][i]['schedule']['id']
win_differential = venue_win(venue_id, away_team_id, 2018) - venue_win(venue_id, home_team_id, 2018)
team_stats = collect_team_stats(game_id, 2018)
player_stats = collect_player_stats(game_id, 2018, 'expected')
test_single_game = []
test_single_game.append(win_differential)
test_single_game += team_stats
test_single_game += player_stats
test_set.append(test_single_game)
return test_set
# training_set = create_training_set()
# pickle.dump(training_set, open('training_set.pkl', 'wb'))
training_set = pickle.load(open('training_set.pkl', 'rb'))
training_win_list = win_list_2016 + win_list_2017 + win_list_2018
test_win_list = win_list_2019
# test_set = create_test_set()
# pickle.dump(test_set, open('test_set.pkl', 'wb'))
test_set = pickle.load(open('test_set.pkl', 'rb'))
def get_clean_idx(stats):
means = np.mean(stats, axis=0)
variances = np.var(stats, axis=0)
idx = np.where(variances == 0)[0]
allidx = np.asarray(range(means.shape[0]))
cleanidx = np.setdiff1d(allidx, idx)
return cleanidx
def get_clean_stats(stats, idx):
return stats[:, idx]
# Convert all four arrays to numpy
training_set_numpy = np.asarray(training_set, dtype=np.float32)
test_set_numpy = np.asarray(test_set, dtype=np.float32)
training_win_list_numpy = np.asarray(training_win_list, dtype=np.float32)
test_win_list_numpy = np.asarray(test_win_list, dtype=np.float32)
clean_idx = get_clean_idx(training_set_numpy)
clean_train_set = get_clean_stats(training_set_numpy, clean_idx)
clean_test_set = get_clean_stats(test_set_numpy, clean_idx)
def normalize(stats, mean, std):
return (stats - mean / std)
train_mean = np.mean(clean_train_set, axis=0)
train_std = np.std(clean_train_set, axis=0)
norm_train_stats = normalize(clean_train_set, train_mean, train_std)
norm_test_stats = normalize(clean_test_set, train_mean, train_std)
model_logistic = LogisticRegression(penalty='l2', tol=0.05)
# model_logistic = LogisticRegression(penalty='l2')
model_logistic.fit(norm_train_stats, training_win_list_numpy)
score = model_logistic.score(norm_test_stats, test_win_list_numpy)
print('test shape = ', norm_test_stats.shape)
# print('SCORE = ', score)
# Convert to numpy (normalized stats)
# training_set_numpy = np.asarray(norm_train_stats, dtype=np.float32)
# test_set_numpy = np.asarray(norm_test_stats, dtype=np.float32)
# pickle.dump(training_set_numpy, open('training_set.pkl', 'wb'))
# pickle.dump(test_set_numpy, open('test_set.pkl', 'wb'))
# training_set_numpy = pickle.load(open('training_set.pkl', 'rb'))
# test_set_numpy = pickle.load(open('test_set.pkl', 'rb'))
# model_logistic = LogisticRegression(penalty='l2', C=0.1, tol=0.04)
# model_logistic.fit(training_set_numpy, training_win_list_numpy)
# score = model_logistic.score(test_set_numpy, test_win_list_numpy)
# print('on average score = ', score)
'''
C = [0.01, 0.1, 0.50, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0]
# tol = [1e1, 1e0, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5]
tol = [0.05, 0.06, 0.07]
# penalty = ['l1', 'l2']
penalty = ['l2']
# tol = [0.04]
# C = [0.99, 0.1,0.11]
# C = [0.0999, 0.1, 0.1005]
for p in penalty:
for c in C:
for t in tol:
model_logistic = LogisticRegression(penalty=p, C=c, tol=t)
model_logistic.fit(training_set_numpy, training_win_list_numpy)
score = model_logistic.score(test_set_numpy, test_win_list_numpy)
print('penalty = ', p, ' C = ', c, ' tol = ', t, ' on average score = ', score)
'''
# model_logistic = LogisticRegression(penalty='l2', tol=0.585)
# # model_logistic = LogisticRegression(penalty='l2')
# model_logistic.fit(training_set_numpy, training_win_list_numpy)
# score = model_logistic.score(test_set_numpy, test_win_list_numpy)
# # print('penalty = l2 tol = 0.004 on average score = ', score)
def collect_prediction_array(game_id):
lineup = all_lineups[game_id]
venue_id = lineup['game']['venue']['id']
away_team_id = lineup['game']['awayTeam']['id']
home_team_id = lineup['game']['homeTeam']['id']
game_id = lineup['game']['id']
win_differential = venue_win(venue_id, away_team_id, 2018) - venue_win(venue_id, home_team_id, 2018)
team_stats = collect_team_stats(game_id, 2018)
player_stats = collect_player_stats(game_id, 2018, 'expected')
test_single_game = []
test_single_game.append(win_differential)
test_single_game += team_stats
test_single_game += player_stats
return test_single_game
# This is the final function. The one that returns a win percentage for any given game
def predict(game_id):
prediction = collect_prediction_array(game_id)
del prediction[1494:1504]
prediction_numpy = np.asarray(prediction, dtype=np.float32)
norm_prediction = normalize(prediction_numpy, train_mean, train_std)
print('PREDICTION SHAPE = ', norm_prediction.shape)
probability = model_logistic.predict_proba(np.expand_dims(norm_prediction, axis=0))[0]
return probability
print('training shape = ', norm_train_stats.shape)
print(predict(51258))
# ========================================================================================================================================
'''
api_key = "e0c4e5ec-08d5-414d-88ce-9b392f"
pswrd = "MYSPORTSFEEDS"
seasons = [2016, 2017, 2018, 2019]
def basicAPICall(season, keyword):
print('basic API call : ', keyword, ' season = ', season)
try:
response = requests.get(
url='https://api.mysportsfeeds.com/v2.1/pull/mlb/' + str(season) + '-regular/' + keyword + '.json',
params={
"fordate": "20161121"
},
headers={
"Authorization": "Basic " + base64.b64encode('{}:{}'.format(api_key,pswrd).encode('utf-8')).decode('ascii')
})
except requests.exceptions.RequestException:
print('HTTP Request failed')
return (json.loads(response.content))
def lineupAPICall(season, id):
print('lineup API call, GAME ID = ', id, ' season = ', season)
try:
response = requests.get(
url='https://api.mysportsfeeds.com/v2.1/pull/mlb/'+ str(season) + '-regular/games/' + str(id) + '/lineup.json',
params={
"fordate": "20161121"
},
headers={
"Authorization": "Basic " + base64.b64encode('{}:{}'.format(api_key,pswrd).encode('utf-8')).decode('ascii')
}
)
except requests.exceptions.RequestException:
print('HTTP Request failed')
return (json.loads(response.content))
THE FOLLOWING WAS JUST USED TO GET THE PICKLE DATA AND API CALLS, WE NEVER USE THE API AGAIN FROM NOW
for i in range(len(seasons)):
# GAMES RESPONSE
if os.path.exists('games_response_' + str(seasons[i]) + '.pkl'):
games_call_response = pickle.load(open('games_response_' + str(seasons[i]) + '.pkl', 'rb'))
else:
games_call_response = basicAPICall(seasons[i], 'games')
pickle.dump( games_call_response, open('games_response_' + str(seasons[i]) + '.pkl', 'wb' ) )
# Collect all game ids
game_ids = []
for j in range(len(games_call_response['games'])):
game_ids.append(games_call_response['games'][j]['schedule']['id'])
if os.path.exists('game_ids_' + str(seasons[i]) + '.pkl'):
game_ids = pickle.load(open('game_ids_' + str(seasons[i]) + '.pkl', 'rb'))
else:
pickle.dump(game_ids, open('game_ids_' + str(seasons[i]) + '.pkl', 'wb'))
# PLAYER STATS RESPONSE
if os.path.exists('player_stats_' + str(seasons[i]) + '.pkl'):
player_stats_totals_response = pickle.load(open('player_stats_' + str(seasons[i]) + '.pkl', 'rb'))
else:
player_stats_totals_response = basicAPICall(seasons[i], 'player_stats_totals')
pickle.dump( player_stats_totals_response, open('player_stats_' + str(seasons[i]) + '.pkl', 'wb'))
# TEAM STATS RESPONSE
if os.path.exists('team_stats_' + str(seasons[i]) + '.pkl'):
team_stats_totals_response = pickle.load(open('team_stats_' + str(seasons[i]) + '.pkl', 'rb'))
else:
team_stats_totals_response = basicAPICall(seasons[i], 'team_stats_totals')
pickle.dump( team_stats_totals_response, open('team_stats_' + str(seasons[i]) + '.pkl', 'wb'))
# LINEUPS RESPONSE
if os.path.exists('lineup_responses_' + str(seasons[i]) + '.pkl'):
lineup_call_responses = pickle.load(open('lineup_responses_' + str(seasons[i]) + '.pkl', 'rb'))
else:
lineup_call_responses = dict()
for j in range(len(game_ids)):
print('GAME ', j, ' season : ', seasons[i])
lineup_call_response = lineupAPICall(seasons[i], game_ids[j])
lineup_call_responses[game_ids[j]] = lineup_call_response
pickle.dump(lineup_call_responses, open('lineup_responses_' + str(seasons[i]) + '.pkl', 'wb' ))
def create_win_list(season):
win_list = []
games_response = initialize_games_call_response(season)
for i in range(len(games_response['games'])):
if(games_response['games'][i]['score']['awayScoreTotal'] > games_response['games'][i]['score']['homeScoreTotal']):
win_list.append(1)
else:
win_list.append(0)
return win_list
for i in range(len(seasons)):
win_list = create_win_list(seasons[i])
pickle.dump(win_list, open( 'win_list_' + str(seasons[i]) + '.pkl', 'wb'))
'''