We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
https://stackoverflow.com/questions/67138433/how-to-use-margins-package-to-evaluate-marginal-affects-at-different-values-of-t
## load package library("margins") library("MASS") ## The following example does not work. But somehow the reproducible example I tried to make does work ## See https://stackoverflow.com/questions/67138433/how-to-use-margins-package-to-evaluate-marginal-affects-at-different-values-of-t fit.polr2 <- polr(ordinal_dep_var ~ Dummy + Continuous + Dummy2 + as.factor(industry) + Urbanisation_Dummy + Size_Dummy, data = df2, method = "probit", Hess=TRUE) summary(margins(fit.polr2)) polr_1st_margins <- summary(margins(fit.polr2, at = list(ordinal_dep_var= 0:3))) Error in dat[, not_numeric, drop = FALSE] : incorrect number of dimensions df2 <- structure(list(ordinal_dep_var = structure(c(4L, 3L, 4L, 1L, 3L, 1L, 1L, 3L, 1L, 4L, 4L, 4L, 1L, 3L, 4L, 2L, 4L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 3L, 4L, 3L, 2L, 2L, 1L, 1L, 2L, 4L, 2L, 1L, 4L, 3L, 1L, 2L, 3L, 4L, 1L, 1L, 4L, 1L, 1L, 1L, 1L, 2L, 4L, 2L, 1L, 4L, 1L, 1L, 3L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 3L, 2L, 3L, 3L, 1L, 4L, 4L, 4L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 4L, 3L, 3L, 1L, 1L, 1L, 3L, 2L, 3L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 4L, 3L, 2L, 2L, 3L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("0", "1", "2", "3"), class = c("ordered", "factor")), Dummy = c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0), Continuous = c(15.6862745098039, 41.6666666666667, 26.9230769230769, 14.8514851485149, 32.1428571428571, 20, 43.75, 0, 0, 0, 80, 100, 21.4285714285714, 23.8095238095238, 28.125, 0, 30.3030303030303, 25, 100, 100, 100, 13.3333333333333, 66.6666666666667, 33.3333333333333, 55.5555555555556, 72.2222222222222, 57.3033707865169, 17.7777777777778, 47.6190476190476, 17.7777777777778, 41.6666666666667, 40, 20, 8.33333333333333, 16.6666666666667, 40, 100, 0, 50, 0, 0, 7.69230769230769, 0, 0, 0, 0, 0, 0, 0, 33.3333333333333, 20, 1.84089414858646, 1.84089414858646, 1.84089414858646, 30, 20, 0, 33.3333333333333, 33.3333333333333, 0, 0, 0, 100, 50, 22.2222222222222, 0, 0, 50, 50, 46.1538461538462, 44.4444444444444, 0, 5.55555555555556, 0, 0, 47.3684210526316, 43.75, 18.1818181818182, 0, 42.8571428571429, 14.2857142857143, 0, 50, 0, 0, 50, 20, 50, 100, 0, 42.8571428571429, 20, 25, 33.3333333333333, 0, 0, 0, 66.6666666666667, 0, 25.9259259259259, 0, 33.3333333333333, 0, 100, 25, 0, 0, 10, 100, 50, 33.3333333333333, 75, 0, 0, 40, 0, 33.3333333333333, 28.5714285714286, 0, 0, 28.5714285714286, 0, 28.5714285714286, 0, 0, 9.09090909090909, 30, 66.6666666666667, 50, 0, 20, 50, 0, 33.3333333333333, 0, 66.6666666666667, 18.1818181818182, 28.5714285714286, 36.9230769230769, 14.2857142857143, 36.3636363636364, 0, 0, 7.69230769230769), Dummy2 = structure(c(0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0), label = "Gift/informal payment requested: tax inspectorate?", format.stata = "%14.0f", class = c("haven_labelled", "vctrs_vctr", "double"), labels = c(Yes = 1, No = 2)), industry = structure(c(3, 7, 2, 7, 19, 17, 9, 7, 9, 11, 12, 10, 5, 5, 3, 12, 3, 5, 4, 1, 1, 11, 5, 7, 9, 9, 7, 9, 5, 9, 4, 7, 9, 11, 11, 22, 12, 21, 19, 11, 10, 7, 19, 23, 20, 20, 21, 24, 19, 1, 21, 21, 21, 21, 21, 21, 6, 6, 21, 3, 17, 19, 20, 12, 21, 20, 12, 10, 10, 21, 21, 19, 3, 21, 21, 10, 10, 21, 5, 20, 21, 19, 22, 15, 6, 21, 21, 10, 19, 21, 20, 3, 6, 10, 24, 24, 21, 23, 21, 21, 11, 21, 3, 3, 21, 24, 21, 1, 10, 22, 19, 17, 3, 20, 23, 1, 22, 21, 21, 23, 21, 23, 21, 22, 22, 21, 10, 13, 10, 15, 10, 24, 24, 7, 10, 10, 22, 21, 21, 23, 21, 22, 7, 21), label = "Industry", format.stata = "%34.0g", class = c("haven_labelled", "vctrs_vctr", "double"), labels = c(Textiles = 1, Leather = 2, Garments = 3, Agroindustry = 4, Food = 5, Beverages = 6, `Metals and machinery` = 7, Electronics = 8, `Chemicals and pharmaceutics` = 9, Construction = 10, `Wood and furniture` = 11, `Non-metallic and plastic materials` = 12, Paper = 13, `Sport goods` = 14, `IT services` = 15, `Other manufacturing` = 16, Telecommunications = 17, `Accounting and finance` = 18, `Advertising and marketing` = 19, `Other services` = 20, `Retail and wholesale trade` = 21, `Hotels and restaurants` = 22, Transport = 23, `Real estate and rental services` = 24, `Mining and quarrying` = 25, `Auto and auto components` = 26, `Other transport equipment` = 27, `Other unclassified` = 99)), Urbanisation_Dummy = structure(c(2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 1L, 1L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 3L, 2L, 2L, 1L, 1L, 1L, 2L, 3L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 3L, 2L, 2L, 3L, 1L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 3L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 3L, 1L, 3L, 2L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 1L, 3L, 1L, 1L, 3L, 3L, 1L, 3L, 3L, 2L, 3L, 1L, 1L), .Label = c("City > 250", "50k-250k", "< 50k"), class = "factor"), Size_Dummy = structure(c(3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 3L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 1L, 2L, 3L, 3L, 2L, 1L, 1L, 1L, 3L, 3L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 2L, 3L, 3L, 3L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 2L, 3L, 3L, 1L, 3L, 1L, 1L, 1L, 3L, 3L, 2L, 3L, 1L, 2L, 1L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 3L, 3L, 2L, 3L, 3L, 1L, 3L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L), .Label = c("Employees: < 10", "Employees: 10-19", "Employees: 20+"), class = "factor")), row.names = c(NA, -144L), class = c("data.table", "data.frame")) ## session info for your system sessionInfo() R version 3.6.1 (2019-07-05) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows 10 x64 (build 19042) Matrix products: default Random number generation: RNG: Mersenne-Twister Normal: Inversion Sample: Rounding locale: [1] LC_COLLATE=English_United Kingdom.1252 LC_CTYPE=English_United Kingdom.1252 LC_MONETARY=English_United Kingdom.1252 LC_NUMERIC=C [5] LC_TIME=English_United Kingdom.1252 attached base packages: [1] splines stats4 stats graphics grDevices utils datasets methods base other attached packages: [1] margins_0.3.26 forcats_0.5.1 purrr_0.3.4 readr_1.4.0 tidyr_1.1.3 tibble_3.1.0 tidyverse_1.3.0 dplyr_1.0.5 [9] data.table_1.14.0 lavaan_0.6-8 plm_2.4-1 modelr_0.1.8 magrittr_2.0.1 bbmle_1.0.23.1 openxlsx_4.2.3 AER_1.2-9 [17] sandwich_3.0-0 lmtest_0.9-38 car_3.0-10 carData_3.0-4 ff_4.0.4 bit_4.0.4 pryr_0.1.4 jomo_2.7-2 [25] mice_3.13.0 GGally_2.1.1 visdat_0.5.3 dummies_1.5.6 checkmate_2.0.0 randomForest_4.6-14 zoo_1.8-9 sjlabelled_1.1.7 [33] glmnet_4.1-1 Matrix_1.2-17 stringr_1.4.0 foreign_0.8-71 readxl_1.3.1 countrycode_1.2.0 logspline_2.1.16 fitdistrplus_1.1-3 [41] MASS_7.3-51.4 doBy_4.6.9 ivmodel_1.9.0 censReg_0.5-32 maxLik_1.4-6 miscTools_0.6-26 VGAM_1.1-5 stargazer_5.2.2 [49] growthrates_0.8.2 deSolve_1.28 rms_6.2-0 SparseM_1.81 Hmisc_4.5-0 ggplot2_3.3.3 Formula_1.2-4 survival_3.2-7 [57] lattice_0.20-38 sure_0.2.0 haven_2.3.1 session_1.0.3 loaded via a namespace (and not attached): [1] backports_1.2.1 plyr_1.8.6 TH.data_1.0-10 digest_0.6.27 foreach_1.5.1 htmltools_0.5.1.1 fansi_0.4.2 cluster_2.1.0 [9] matrixStats_0.58.0 bdsmatrix_1.3-4 jpeg_0.1-8.1 colorspace_2.0-0 rvest_1.0.0 rbibutils_2.0 xfun_0.22 jsonlite_1.7.2 [17] crayon_1.4.1 lme4_1.1-26 iterators_1.0.13 glue_1.4.2 FME_1.3.6.1 gtable_0.3.0 MatrixModels_0.5-0 shape_1.4.5 [25] abind_1.4-5 scales_1.1.1 mvtnorm_1.1-1 DBI_1.1.1 Rcpp_1.0.6 htmlTable_2.1.0 tmvnsim_1.0-2 prediction_0.3.14 [33] httr_1.4.2 htmlwidgets_1.5.3 RColorBrewer_1.1-2 ellipsis_0.3.1 farver_2.1.0 pkgconfig_2.0.3 reshape_0.8.8 dbplyr_2.1.0 [41] nnet_7.3-12 utf8_1.2.1 labeling_0.4.2 tidyselect_1.1.0 rlang_0.4.10 reshape2_1.4.4 munsell_0.5.0 cellranger_1.1.0 [49] tools_3.6.1 cli_2.3.1 generics_0.1.0 broom_0.7.5 glmmML_1.1.1 fs_1.5.0 knitr_1.31 zip_2.1.1 [57] rootSolve_1.8.2.1 nlme_3.1-140 quantreg_5.85 xml2_1.3.2 compiler_3.6.1 rstudioapi_0.13 curl_4.3 png_0.1-7 [65] reprex_1.0.0 statmod_1.4.35 pbivnorm_0.6.0 stringi_1.5.3 nloptr_1.2.2.2 vctrs_0.3.6 pillar_1.5.1 lifecycle_1.0.0 [73] Rdpack_2.1.1 insight_0.13.1 conquer_1.0.2 R6_2.5.0 latticeExtra_0.6-29 gridExtra_2.3 rio_0.5.26 codetools_0.2-16 [81] polspline_1.1.19 boot_1.3-22 assertthat_0.2.1 minpack.lm_1.2-1 withr_2.4.1 mnormt_2.0.2 Deriv_4.1.3 multcomp_1.4-16 [89] parallel_3.6.1 hms_1.0.0 grid_3.6.1 rpart_4.1-15 coda_0.19-4 minqa_1.2.4 lubridate_1.7.10 numDeriv_2016.8-1.1 [97] base64enc_0.1-3
The text was updated successfully, but these errors were encountered:
No branches or pull requests
https://stackoverflow.com/questions/67138433/how-to-use-margins-package-to-evaluate-marginal-affects-at-different-values-of-t
The text was updated successfully, but these errors were encountered: