Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

at = list() does not find variable in the model fit #169

Open
1 task
Ellesaere opened this issue Apr 17, 2021 · 0 comments
Open
1 task

at = list() does not find variable in the model fit #169

Ellesaere opened this issue Apr 17, 2021 · 0 comments

Comments

@Ellesaere
Copy link

  • a possible bug

https://stackoverflow.com/questions/67138433/how-to-use-margins-package-to-evaluate-marginal-affects-at-different-values-of-t

## load package
library("margins")
library("MASS")

## The following example does not work. But somehow the reproducible example I tried to make does work
## See https://stackoverflow.com/questions/67138433/how-to-use-margins-package-to-evaluate-marginal-affects-at-different-values-of-t
fit.polr2 <- polr(ordinal_dep_var ~ Dummy + Continuous + Dummy2 + as.factor(industry) + Urbanisation_Dummy + Size_Dummy, data = df2, method = "probit", Hess=TRUE)
summary(margins(fit.polr2))

polr_1st_margins <- summary(margins(fit.polr2, at = list(ordinal_dep_var= 0:3)))

Error in dat[, not_numeric, drop = FALSE] : 
  incorrect number of dimensions


df2 <- structure(list(ordinal_dep_var = structure(c(4L, 3L, 4L, 1L, 
3L, 1L, 1L, 3L, 1L, 4L, 4L, 4L, 1L, 3L, 4L, 2L, 4L, 2L, 2L, 1L, 
2L, 1L, 1L, 1L, 3L, 4L, 3L, 2L, 2L, 1L, 1L, 2L, 4L, 2L, 1L, 4L, 
3L, 1L, 2L, 3L, 4L, 1L, 1L, 4L, 1L, 1L, 1L, 1L, 2L, 4L, 2L, 1L, 
4L, 1L, 1L, 3L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 3L, 
2L, 3L, 3L, 1L, 4L, 4L, 4L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
1L, 2L, 1L, 2L, 4L, 3L, 3L, 1L, 1L, 1L, 3L, 2L, 3L, 2L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 4L, 3L, 2L, 2L, 3L, 1L, 1L, 1L, 
1L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 2L, 1L, 
1L, 1L, 1L, 1L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("0", 
"1", "2", "3"), class = c("ordered", "factor")), Dummy = c(0, 
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 
0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 
0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 
1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 
0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 
0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0), Continuous = c(15.6862745098039, 
41.6666666666667, 26.9230769230769, 14.8514851485149, 32.1428571428571, 
20, 43.75, 0, 0, 0, 80, 100, 21.4285714285714, 23.8095238095238, 
28.125, 0, 30.3030303030303, 25, 100, 100, 100, 13.3333333333333, 
66.6666666666667, 33.3333333333333, 55.5555555555556, 72.2222222222222, 
57.3033707865169, 17.7777777777778, 47.6190476190476, 17.7777777777778, 
41.6666666666667, 40, 20, 8.33333333333333, 16.6666666666667, 
40, 100, 0, 50, 0, 0, 7.69230769230769, 0, 0, 0, 0, 0, 0, 0, 
33.3333333333333, 20, 1.84089414858646, 1.84089414858646, 1.84089414858646, 
30, 20, 0, 33.3333333333333, 33.3333333333333, 0, 0, 0, 100, 
50, 22.2222222222222, 0, 0, 50, 50, 46.1538461538462, 44.4444444444444, 
0, 5.55555555555556, 0, 0, 47.3684210526316, 43.75, 18.1818181818182, 
0, 42.8571428571429, 14.2857142857143, 0, 50, 0, 0, 50, 20, 50, 
100, 0, 42.8571428571429, 20, 25, 33.3333333333333, 0, 0, 0, 
66.6666666666667, 0, 25.9259259259259, 0, 33.3333333333333, 0, 
100, 25, 0, 0, 10, 100, 50, 33.3333333333333, 75, 0, 0, 40, 0, 
33.3333333333333, 28.5714285714286, 0, 0, 28.5714285714286, 0, 
28.5714285714286, 0, 0, 9.09090909090909, 30, 66.6666666666667, 
50, 0, 20, 50, 0, 33.3333333333333, 0, 66.6666666666667, 18.1818181818182, 
28.5714285714286, 36.9230769230769, 14.2857142857143, 36.3636363636364, 
0, 0, 7.69230769230769), Dummy2 = structure(c(0, 0, 0, 0, 1, 
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 
0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 
1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 
0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 
0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 
1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0), label = "Gift/informal payment requested: tax inspectorate?", format.stata = "%14.0f", class = c("haven_labelled", 
"vctrs_vctr", "double"), labels = c(Yes = 1, No = 2)), industry = structure(c(3, 
7, 2, 7, 19, 17, 9, 7, 9, 11, 12, 10, 5, 5, 3, 12, 3, 5, 4, 1, 
1, 11, 5, 7, 9, 9, 7, 9, 5, 9, 4, 7, 9, 11, 11, 22, 12, 21, 19, 
11, 10, 7, 19, 23, 20, 20, 21, 24, 19, 1, 21, 21, 21, 21, 21, 
21, 6, 6, 21, 3, 17, 19, 20, 12, 21, 20, 12, 10, 10, 21, 21, 
19, 3, 21, 21, 10, 10, 21, 5, 20, 21, 19, 22, 15, 6, 21, 21, 
10, 19, 21, 20, 3, 6, 10, 24, 24, 21, 23, 21, 21, 11, 21, 3, 
3, 21, 24, 21, 1, 10, 22, 19, 17, 3, 20, 23, 1, 22, 21, 21, 23, 
21, 23, 21, 22, 22, 21, 10, 13, 10, 15, 10, 24, 24, 7, 10, 10, 
22, 21, 21, 23, 21, 22, 7, 21), label = "Industry", format.stata = "%34.0g", class = c("haven_labelled", 
"vctrs_vctr", "double"), labels = c(Textiles = 1, Leather = 2, 
Garments = 3, Agroindustry = 4, Food = 5, Beverages = 6, `Metals and machinery` = 7, 
Electronics = 8, `Chemicals and pharmaceutics` = 9, Construction = 10, 
`Wood and furniture` = 11, `Non-metallic and plastic materials` = 12, 
Paper = 13, `Sport goods` = 14, `IT services` = 15, `Other manufacturing` = 16, 
Telecommunications = 17, `Accounting and finance` = 18, `Advertising and marketing` = 19, 
`Other services` = 20, `Retail and wholesale trade` = 21, `Hotels and restaurants` = 22, 
Transport = 23, `Real estate and rental services` = 24, `Mining and quarrying` = 25, 
`Auto and auto components` = 26, `Other transport equipment` = 27, 
`Other unclassified` = 99)), Urbanisation_Dummy = structure(c(2L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 
1L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 1L, 1L, 2L, 3L, 
3L, 3L, 1L, 1L, 1L, 1L, 2L, 3L, 2L, 2L, 1L, 1L, 1L, 2L, 3L, 2L, 
3L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
2L, 1L, 2L, 3L, 2L, 2L, 3L, 1L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 
3L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 3L, 2L, 1L, 1L, 2L, 
2L, 1L, 1L, 3L, 1L, 3L, 2L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, 2L, 3L, 
1L, 2L, 1L, 3L, 1L, 1L, 3L, 3L, 1L, 3L, 3L, 2L, 3L, 1L, 1L), .Label = c("City > 250", 
"50k-250k", "< 50k"), class = "factor"), Size_Dummy = structure(c(3L, 
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 3L, 3L, 
3L, 1L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 
3L, 3L, 3L, 3L, 3L, 2L, 3L, 1L, 2L, 3L, 3L, 2L, 1L, 1L, 1L, 3L, 
3L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 2L, 3L, 3L, 3L, 1L, 2L, 1L, 1L, 
1L, 1L, 1L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 
1L, 3L, 1L, 3L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 2L, 3L, 3L, 1L, 3L, 
1L, 1L, 1L, 3L, 3L, 2L, 3L, 1L, 2L, 1L, 3L, 1L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 3L, 3L, 
2L, 3L, 3L, 1L, 3L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L), .Label = c("Employees: < 10", 
"Employees: 10-19", "Employees: 20+"), class = "factor")), row.names = c(NA, 
-144L), class = c("data.table", "data.frame"))


## session info for your system
sessionInfo()

R version 3.6.1 (2019-07-05)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)

Matrix products: default

Random number generation:
 RNG:     Mersenne-Twister 
 Normal:  Inversion 
 Sample:  Rounding 
 
locale:
[1] LC_COLLATE=English_United Kingdom.1252  LC_CTYPE=English_United Kingdom.1252    LC_MONETARY=English_United Kingdom.1252 LC_NUMERIC=C                           
[5] LC_TIME=English_United Kingdom.1252    

attached base packages:
[1] splines   stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] margins_0.3.26      forcats_0.5.1       purrr_0.3.4         readr_1.4.0         tidyr_1.1.3         tibble_3.1.0        tidyverse_1.3.0     dplyr_1.0.5        
 [9] data.table_1.14.0   lavaan_0.6-8        plm_2.4-1           modelr_0.1.8        magrittr_2.0.1      bbmle_1.0.23.1      openxlsx_4.2.3      AER_1.2-9          
[17] sandwich_3.0-0      lmtest_0.9-38       car_3.0-10          carData_3.0-4       ff_4.0.4            bit_4.0.4           pryr_0.1.4          jomo_2.7-2         
[25] mice_3.13.0         GGally_2.1.1        visdat_0.5.3        dummies_1.5.6       checkmate_2.0.0     randomForest_4.6-14 zoo_1.8-9           sjlabelled_1.1.7   
[33] glmnet_4.1-1        Matrix_1.2-17       stringr_1.4.0       foreign_0.8-71      readxl_1.3.1        countrycode_1.2.0   logspline_2.1.16    fitdistrplus_1.1-3 
[41] MASS_7.3-51.4       doBy_4.6.9          ivmodel_1.9.0       censReg_0.5-32      maxLik_1.4-6        miscTools_0.6-26    VGAM_1.1-5          stargazer_5.2.2    
[49] growthrates_0.8.2   deSolve_1.28        rms_6.2-0           SparseM_1.81        Hmisc_4.5-0         ggplot2_3.3.3       Formula_1.2-4       survival_3.2-7     
[57] lattice_0.20-38     sure_0.2.0          haven_2.3.1         session_1.0.3      

loaded via a namespace (and not attached):
 [1] backports_1.2.1     plyr_1.8.6          TH.data_1.0-10      digest_0.6.27       foreach_1.5.1       htmltools_0.5.1.1   fansi_0.4.2         cluster_2.1.0      
 [9] matrixStats_0.58.0  bdsmatrix_1.3-4     jpeg_0.1-8.1        colorspace_2.0-0    rvest_1.0.0         rbibutils_2.0       xfun_0.22           jsonlite_1.7.2     
[17] crayon_1.4.1        lme4_1.1-26         iterators_1.0.13    glue_1.4.2          FME_1.3.6.1         gtable_0.3.0        MatrixModels_0.5-0  shape_1.4.5        
[25] abind_1.4-5         scales_1.1.1        mvtnorm_1.1-1       DBI_1.1.1           Rcpp_1.0.6          htmlTable_2.1.0     tmvnsim_1.0-2       prediction_0.3.14  
[33] httr_1.4.2          htmlwidgets_1.5.3   RColorBrewer_1.1-2  ellipsis_0.3.1      farver_2.1.0        pkgconfig_2.0.3     reshape_0.8.8       dbplyr_2.1.0       
[41] nnet_7.3-12         utf8_1.2.1          labeling_0.4.2      tidyselect_1.1.0    rlang_0.4.10        reshape2_1.4.4      munsell_0.5.0       cellranger_1.1.0   
[49] tools_3.6.1         cli_2.3.1           generics_0.1.0      broom_0.7.5         glmmML_1.1.1        fs_1.5.0            knitr_1.31          zip_2.1.1          
[57] rootSolve_1.8.2.1   nlme_3.1-140        quantreg_5.85       xml2_1.3.2          compiler_3.6.1      rstudioapi_0.13     curl_4.3            png_0.1-7          
[65] reprex_1.0.0        statmod_1.4.35      pbivnorm_0.6.0      stringi_1.5.3       nloptr_1.2.2.2      vctrs_0.3.6         pillar_1.5.1        lifecycle_1.0.0    
[73] Rdpack_2.1.1        insight_0.13.1      conquer_1.0.2       R6_2.5.0            latticeExtra_0.6-29 gridExtra_2.3       rio_0.5.26          codetools_0.2-16   
[81] polspline_1.1.19    boot_1.3-22         assertthat_0.2.1    minpack.lm_1.2-1    withr_2.4.1         mnormt_2.0.2        Deriv_4.1.3         multcomp_1.4-16    
[89] parallel_3.6.1      hms_1.0.0           grid_3.6.1          rpart_4.1-15        coda_0.19-4         minqa_1.2.4         lubridate_1.7.10    numDeriv_2016.8-1.1
[97] base64enc_0.1-3    
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant