-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtransformer.py
303 lines (221 loc) · 10.1 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import torch.nn as nn
import torch
import warnings as wrn
wrn.filterwarnings('ignore')
# ---------------------------
class Encoder(nn.Module):
def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device, max_length=50):
super().__init__()
self.device = device
self.tok_embedding = nn.Embedding(input_dim, hid_dim)
self.pos_embedding = nn.Embedding(max_length, hid_dim)
self.layers = nn.ModuleList([
EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device)
for _ in range(n_layers)
])
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device)
def forward(self, src, src_mask):
# src = [batch size, src len]
# src_mask = [batch size, 1, 1, src len]
batch_size = src.shape[0]
src_len = src.shape[1]
pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device)
# pos = [batch size, src len]
src = self.dropout(
(self.tok_embedding(src) * self.scale) + self.pos_embedding(pos)
)
# src = [batch size, src len, hid dim]
for layer in self.layers:
src = layer(src, src_mask)
# src = [batch size, src len, hid dim]
return src
# ---------------------------
class EncoderLayer(nn.Module):
def __init__(self, hid_dim, n_heads, pf_dim, dropout, device):
super().__init__()
self.self_attn_layer_norm = nn.LayerNorm(hid_dim)
self.ff_layer_norm = nn.LayerNorm(hid_dim)
self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device)
self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, src, src_mask):
# src = [batch size, src len, hid dim]
# src_mask = [batch size, 1, 1, src len]
# self attention
_src, _ = self.self_attention(src, src, src, src_mask)
# dropout, residual connection and layer norm
src = self.self_attn_layer_norm(src + self.dropout(_src))
# src = [batch size, src len, hid dim]
# positionwise feedforward
_src = self.positionwise_feedforward(src)
# dropout, residual and layer norm
src = self.ff_layer_norm(src + self.dropout(_src))
# src = [batch size, src len, hid dim]
return src
# ---------------------------
class MultiHeadAttentionLayer(nn.Module):
def __init__(self, hid_dim, n_heads, dropout, device):
super().__init__()
assert hid_dim % n_heads == 0
self.hid_dim = hid_dim
self.n_heads = n_heads
self.head_dim = hid_dim // n_heads
self.fc_q = nn.Linear(hid_dim, hid_dim)
self.fc_k = nn.Linear(hid_dim, hid_dim)
self.fc_v = nn.Linear(hid_dim, hid_dim)
self.fc_o = nn.Linear(hid_dim, hid_dim)
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)
def forward(self, query, key, value, mask=None):
# query = [batch size, query len, hid dim]
# key = [batch size, key len, hid dim]
# value = [batch size, value len, hid dim]
batch_size = query.shape[0]
Q = self.fc_q(query)
K = self.fc_k(key)
V = self.fc_v(value)
# Q = [batch size, query len, hid dim]
# K = [batch size, key len, hid dim]
# V = [batch size, value len, hid dim]
Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
# Q = [batch size, n heads, query len, head dim]
# K = [batch size, n heads, key len, head dim]
# V = [batch size, n heads, value len, head dim]
energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale
# energy = [batch size, n heads, query len, key len]
if mask is not None:
energy = energy.masked_fill(mask == 0, -1e10)
attention = torch.softmax(energy, dim=-1)
# attention = [batch size, n heads, query len, key len]
x = torch.matmul(self.dropout(attention), V)
# x = [batch size, n heads, query len, head dim]
x = x.permute(0, 2, 1, 3).contiguous()
# x = [batch size, query len, n heads, head dim]
x = x.view(batch_size, -1, self.hid_dim)
# x = [batch size, query len, hid dim]
x = self.fc_o(x)
# x = [batch size, query len, hid dim]
return x, attention
# ---------------------------
class PositionwiseFeedforwardLayer(nn.Module):
def __init__(self, hid_dim, pf_dim, dropout):
super().__init__()
self.fc_1 = nn.Linear(hid_dim, pf_dim)
self.fc_2 = nn.Linear(pf_dim, hid_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# x = [batch size, seq len, hid dim]
x = self.dropout(torch.relu(self.fc_1(x)))
# x = [batch size, seq len, pf dim]
x = self.fc_2(x)
# x = [batch size, seq len, hid dim]
return x
# ---------------------------
class Decoder(nn.Module):
def __init__(self, output_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device, max_length=50):
super().__init__()
self.device = device
self.tok_embedding = nn.Embedding(output_dim, hid_dim)
self.pos_embedding = nn.Embedding(max_length, hid_dim)
self.layers = nn.ModuleList([
DecoderLayer(hid_dim, n_heads, pf_dim, dropout, device)
for _ in range(n_layers)
])
self.fc_out = nn.Linear(hid_dim, output_dim)
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device)
def forward(self, trg, enc_src, trg_mask, src_mask):
# trg = [batch size, trg len]
# enc_src = [batch size, src len, hid dim]
# trg_mask = [batch size, 1, trg len, trg len]
# src_mask = [batch size, 1, 1, src len]
batch_size = trg.shape[0]
trg_len = trg.shape[1]
pos = torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(self.device)
# pos = [batch size, trg len]
trg = self.dropout(
(self.tok_embedding(trg) * self.scale) + self.pos_embedding(pos)
)
# trg = [batch size, trg len, hid dim]
for layer in self.layers:
trg, attention = layer(trg, enc_src, trg_mask, src_mask)
# trg = [batch size, trg len, hid dim]
# attention = [batch size, n heads, trg len, src len]
output = self.fc_out(trg)
# output = [batch size, trg len, output dim]
return output, attention
# ---------------------------
class DecoderLayer(nn.Module):
def __init__(self, hid_dim, n_heads, pf_dim, dropout, device):
super().__init__()
self.self_attn_layer_norm = nn.LayerNorm(hid_dim)
self.enc_attn_layer_norm = nn.LayerNorm(hid_dim)
self.ff_layer_norm = nn.LayerNorm(hid_dim)
self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device)
self.encoder_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device)
self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, trg, enc_src, trg_mask, src_mask):
# trg = [batch size, trg len, hid dim]
# enc_src = [batch size, src len, hid dim]
# trg_mask = [batch size, 1, trg len, trg len]
# src_mask = [batch size, 1, 1, src len]
# self attention
_trg, _ = self.self_attention(trg, trg, trg, trg_mask)
# dropout, residual connection and layer norm
trg = self.self_attn_layer_norm(trg + self.dropout(_trg))
# trg = [batch size, trg len, hid dim]
# encoder attention
_trg, attention = self.encoder_attention(trg, enc_src, enc_src, src_mask)
# attention = [batch size, n heads, trg len, src len]
# dropout, residual connection and layer norm
trg = self.enc_attn_layer_norm(trg + self.dropout(_trg))
# trg = [batch size, trg len, hid dim]
# positionwise feedforward
_trg = self.positionwise_feedforward(trg)
# dropout, residual and layer norm
trg = self.ff_layer_norm(trg + self.dropout(_trg))
# trg = [batch size, trg len, hid dim]
return trg, attention
# ---------------------------
class Seq2Seq(nn.Module):
def __init__(self, encoder, decoder, src_pad_idx, trg_pad_idx, device):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.src_pad_idx = src_pad_idx
self.trg_pad_idx = trg_pad_idx
self.device = device
def make_src_mask(self, src):
# src = [batch size, src len]
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
# src_mask = [batch size, 1, 1, src len]
return src_mask
def make_trg_mask(self, trg):
# trg = [batch size, trg len]
trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(2)
# trg_pad_mask = [batch size, 1, 1, trg len]
trg_len = trg.shape[1]
trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len), device=self.device)).bool()
# trg_sub_mask = [trg len, trg len]
trg_mask = trg_pad_mask & trg_sub_mask
# trg_mask = [batch size, 1, trg len, trg len]
return trg_mask
def forward(self, src, trg):
# src = [batch size, src len]
# trg = [batch size, trg len]
src_mask = self.make_src_mask(src)
trg_mask = self.make_trg_mask(trg)
# src_mask = [batch size, 1, 1, src len]
# trg_mask = [batch size, 1, trg len, trg len]
enc_src = self.encoder(src, src_mask)
# enc_src = [batch size, src len, hid dim]
output, attention = self.decoder(trg, enc_src, trg_mask, src_mask)
# output = [batch size, trg len, output dim]
# attention = [batch size, n heads, trg len, src len]
return output, attention
if __name__ == '__main__':
pass