Skip to content

Latest commit

 

History

History
57 lines (26 loc) · 1.07 KB

File metadata and controls

57 lines (26 loc) · 1.07 KB

Installation

This guide outlines the steps to set up your environment, install necessary libraries, and structure your project for fine-tuning and inference using Azure ML Service as the backend and ONNX Runtime for samples.

1. Set Python Env

Create and activate a new Conda environment with Python 3.10.12.

conda create -n slmopsenv python==3.10.12

conda activate slmopsenv

2. Install Python Library

Install the required Python libraries from the requirements.txt file.

pip install -r requirements.txt

3. Structure

Your project structure is in the following directories:

|--📁 QA_E2E
    |-📁 datasets
    |-📁 fine-tuning
    |-📁 inferences
    |-📁 models-cache
    

📁 datasets - Store the data that needs fine-tuning as JSON format files.

📁 fine-tuning - : Store Microsoft Olive settings in olive-config.json and save a cache of related steps.

📁 inferences - Store inference models and test results.

📁 models-cache - Save fine-tuned Microsoft Phi-3 mini models