-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathquickstart_tutorial.py
54 lines (39 loc) · 1.49 KB
/
quickstart_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import numpy as np
import ark
def quickstart_tutorial():
# Initialize the ARK environments
ark.init()
M, N = 64, 64
# Create an input tensor
input_tensor = ark.tensor([M, N], ark.fp16)
# Create another tensor
other_tensor = ark.tensor([M, N], ark.fp16)
# Add the two tensors
output_tensor = ark.add(input_tensor, other_tensor)
# Initialize the ARK runtime
runtime = ark.Runtime()
# Launch the ARK runtime
runtime.launch()
# Initialize the input and other tensor with random values
input_tensor_host = np.random.rand(M, N).astype(np.float16)
input_tensor.from_numpy(input_tensor_host)
other_tensor_host = np.random.rand(M, N).astype(np.float16)
other_tensor.from_numpy(other_tensor_host)
# Run the ARK program
runtime.run()
# Copy the output tensor from device memory to host memory, if dst is
# None, a new numpy array of the same shape as the src tensor will be returned
output_tensor_host = output_tensor.to_numpy()
# Check if the output tensor is equal to the sum of the input and other tensor
np.testing.assert_allclose(
output_tensor_host, input_tensor_host + other_tensor_host
)
# Stop the ARK runtime (undo Runtime.launch())
runtime.stop()
# Reset the ARK runtime (free all resources)
runtime.reset()
print("Quickstart tutorial is successful!")
if __name__ == "__main__":
quickstart_tutorial()