-
Notifications
You must be signed in to change notification settings - Fork 878
/
Copy pathmoe_one_file_ref.py
542 lines (459 loc) · 19.2 KB
/
moe_one_file_ref.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import json
import logging
import math
import os
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional, Tuple
import fire
import safetensors.torch
import torch
from mistral_common.tokens.tokenizers.base import Tokenizer
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from simple_parsing.helpers import Serializable
from torch import nn
@dataclass
class MoeArgs(Serializable):
num_experts: int
num_experts_per_tok: int
@dataclass
class TransformerArgs(Serializable):
dim: int
n_layers: int
head_dim: int
hidden_dim: int
n_heads: int
n_kv_heads: int
norm_eps: float
vocab_size: int
moe: MoeArgs
# For rotary embeddings. If not set, will be inferred
rope_theta: Optional[float] = None
max_batch_size: int = 0
max_seq_len: int = 0
def is_torchrun() -> bool:
required_vars = ["MASTER_ADDR", "MASTER_PORT", "RANK", "WORLD_SIZE"]
return all(var in os.environ for var in required_vars)
def repeat_kv(keys: torch.Tensor, values: torch.Tensor, repeats: int):
keys = torch.repeat_interleave(keys, repeats=repeats, dim=2)
values = torch.repeat_interleave(values, repeats=repeats, dim=2)
return keys, values
def _reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
"""
freqs_cis: complex - (seq_len, head_dim / 2)
x: complex - (bsz, seq_len, head_dim / 2)
"""
ndim = x.ndim
assert 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1]), (
freqs_cis.shape,
(x.shape[1], x.shape[-1]),
)
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = _reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class Attention(nn.Module):
def __init__(self, args: TransformerArgs):
super().__init__()
self.args = args
self.n_heads: int = args.n_heads
self.n_kv_heads: int = args.n_kv_heads
self.repeats = self.n_heads // self.n_kv_heads
self.scale = self.args.head_dim**-0.5
self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False)
self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False)
self._cache_k: Optional[torch.Tensor] = None
self._cache_v: Optional[torch.Tensor] = None
def get_caches(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
dtype, device = x.dtype, x.device
assert x.shape[0] <= self.args.max_batch_size
assert x.shape[1] <= self.args.max_seq_len
if self._cache_k is None:
self._cache_k = torch.empty(
(
self.args.max_batch_size,
self.args.max_seq_len,
self.n_kv_heads,
self.args.head_dim,
),
dtype=dtype,
device=device,
)
if self._cache_v is None:
self._cache_v = torch.empty(
(
self.args.max_batch_size,
self.args.max_seq_len,
self.n_kv_heads,
self.args.head_dim,
),
dtype=dtype,
device=device,
)
return self._cache_k, self._cache_v
def forward(
self,
x: torch.Tensor,
freqs_cis: torch.Tensor,
positions: torch.Tensor,
mask: Optional[torch.Tensor],
) -> torch.Tensor:
bsz, seqlen, _ = x.shape
cache_k, cache_v = self.get_caches(x)
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_heads, self.args.head_dim)
xk = xk.view(bsz, seqlen, self.n_kv_heads, self.args.head_dim)
xv = xv.view(bsz, seqlen, self.n_kv_heads, self.args.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
# Update cache
scatter_pos = positions[None, :, None, None].repeat(bsz, 1, self.n_kv_heads, self.args.head_dim)
cache_k[:bsz].scatter_(dim=1, index=scatter_pos, src=xk)
cache_v[:bsz].scatter_(dim=1, index=scatter_pos, src=xv)
if positions.shape[0] > 1:
# prefill
key, value = repeat_kv(xk, xv, self.repeats)
else:
assert mask is None
cur_pos = int(positions[-1].item() + 1)
key, value = repeat_kv(
cache_k[:bsz, :cur_pos, ...],
cache_v[:bsz, :cur_pos, ...],
self.repeats,
)
query = xq.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
# scores : [bsz, n_heads, seqlen | 1, seqlen]
scores = torch.matmul(query, key.transpose(2, 3)) * self.scale
if mask is not None:
scores += mask[None, None, ...]
scores = scores.float()
scores = nn.functional.softmax(scores, dim=-1).type_as(query)
output = torch.matmul(scores, value) # (bs, n_local_heads, slen, head_dim)
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
return self.wo(output)
class FeedForward(nn.Module):
def __init__(self, args: TransformerArgs):
super().__init__()
self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False)
self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False)
self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False)
def forward(self, x) -> torch.Tensor:
return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class MoeLayer(nn.Module):
def __init__(self, experts: List[nn.Module], gate: nn.Module, moe_args: MoeArgs):
super().__init__()
assert len(experts) > 0
self.experts = nn.ModuleList(experts)
self.gate = gate
self.args = moe_args
def forward(self, inputs: torch.Tensor):
inputs_squashed = inputs.view(-1, inputs.shape[-1])
gate_logits = self.gate(inputs_squashed)
weights, selected_experts = torch.topk(gate_logits, self.args.num_experts_per_tok)
weights = nn.functional.softmax(
weights,
dim=1,
dtype=torch.float,
).type_as(inputs)
results = torch.zeros_like(inputs_squashed)
for i, expert in enumerate(self.experts):
batch_idx, nth_expert = torch.where(selected_experts == i)
results[batch_idx] += weights[batch_idx, nth_expert, None] * expert(inputs_squashed[batch_idx])
return results.view_as(inputs)
class TransformerBlock(nn.Module):
def __init__(self, args: TransformerArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.attention = Attention(args)
self.feed_forward = MoeLayer(
experts=[FeedForward(args=args) for _ in range(args.moe.num_experts)],
gate=nn.Linear(args.dim, args.moe.num_experts, bias=False),
moe_args=args.moe,
)
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.args = args
def forward(
self,
x: torch.Tensor,
freqs_cis: torch.Tensor,
positions: torch.Tensor,
mask: Optional[torch.Tensor],
) -> torch.Tensor:
r = self.attention.forward(self.attention_norm(x), freqs_cis, positions, mask)
h = x + r
r = self.feed_forward.forward(self.ffn_norm(h))
out = h + r
return out
def precompute_freqs_cis(dim: int, end: int, theta: float) -> torch.Tensor:
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
return torch.polar(torch.ones_like(freqs), freqs) # complex64
class Transformer(nn.Module):
def __init__(
self,
args: TransformerArgs,
pipeline_rank: int = 0,
num_pipeline_ranks: int = 1,
):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
assert self.vocab_size > 0
assert pipeline_rank < num_pipeline_ranks, (pipeline_rank, num_pipeline_ranks)
self.pipeline_rank = pipeline_rank
self.num_pipeline_ranks = num_pipeline_ranks
self._precomputed_freqs_cis: Optional[torch.Tensor] = None
# Modules specific to some ranks:
self.tok_embeddings: Optional[nn.Embedding] = None
self.norm: Optional[RMSNorm] = None
self.output: Optional[nn.Linear] = None
if pipeline_rank == 0:
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
if pipeline_rank == num_pipeline_ranks - 1:
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
# Initialize all layers but slice off those not of this rank.
layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
num_layers_per_rank = math.ceil(args.n_layers / self.num_pipeline_ranks)
offset = self.pipeline_rank * num_layers_per_rank
end = min(args.n_layers, offset + num_layers_per_rank)
self.layers = nn.ModuleDict({str(i): layers[i] for i in range(offset, end)})
self.n_local_layers = len(self.layers)
@property
def dtype(self) -> torch.dtype:
return next(self.parameters()).dtype
@property
def device(self) -> torch.device:
return next(self.parameters()).device
@property
def freqs_cis(self) -> torch.Tensor:
# We cache freqs_cis but need to take care that it is on the right device
# and has the right dtype (complex64). The fact that the dtype is different
# from the module's dtype means we cannot register it as a buffer
if self._precomputed_freqs_cis is None:
theta = self.args.rope_theta or 1000000.0
self._precomputed_freqs_cis = precompute_freqs_cis(self.args.head_dim, 128_000, theta)
if self._precomputed_freqs_cis.device != self.device:
self._precomputed_freqs_cis = self._precomputed_freqs_cis.to(device=self.device)
return self._precomputed_freqs_cis
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
):
freqs_cis = self.freqs_cis[positions]
(bsz, seqlen) = input_ids.shape
bsz * seqlen
if self.pipeline_rank == 0:
assert self.tok_embeddings is not None
h = self.tok_embeddings(input_ids)
assert h.shape == (bsz, seqlen, self.args.dim)
assert h.dtype == self.dtype
else:
h = torch.empty(bsz, seqlen, self.args.dim, device=self.device, dtype=self.dtype)
torch.distributed.recv(h, src=self.pipeline_rank - 1)
mask: Optional[torch.Tensor] = None
if input_ids.shape[1] > 1:
tensor = torch.full(
(seqlen, seqlen),
dtype=h.dtype,
fill_value=1,
device=h.device,
)
mask = torch.log(torch.tril(tensor, diagonal=0)).to(h.dtype)
for layer in self.layers.values():
h = layer(h, freqs_cis, positions, mask)
if self.pipeline_rank < self.num_pipeline_ranks - 1:
torch.distributed.send(h, dst=self.pipeline_rank + 1)
outs = torch.empty(*h.shape[:-1], self.vocab_size, device=h.device, dtype=h.dtype)
else:
assert self.output is not None
assert self.norm is not None
outs = self.output(self.norm(h))
if self.num_pipeline_ranks > 1:
torch.distributed.broadcast(outs, src=self.num_pipeline_ranks - 1)
return outs.float()
def load_state_dict(self, state_dict, *args, **kwargs):
state_to_load = {}
skipped = set([])
for k, v in state_dict.items():
if k.startswith("tok_embeddings"):
if self.pipeline_rank == 0:
state_to_load[k] = v
else:
logging.debug(
"Skipping parameter %s at pipeline rank %d",
k,
self.pipeline_rank,
)
skipped.add(k)
elif k.startswith("norm") or k.startswith("output"):
if self.pipeline_rank == self.num_pipeline_ranks - 1:
state_to_load[k] = v
else:
logging.debug(
"Skipping parameter %s at pipeline rank %d",
k,
self.pipeline_rank,
)
skipped.add(k)
elif k.startswith("layers"):
layer_id = k.split(".")[1]
if layer_id in self.layers:
state_to_load[k] = v
else:
logging.debug(
"Skipping parameter %s at pipeline rank %d",
k,
self.pipeline_rank,
)
skipped.add(k)
else:
raise ValueError(f"Unexpected key {k}")
assert set(state_dict.keys()) == skipped.union(set(state_to_load.keys()))
super().load_state_dict(state_to_load, *args, **kwargs)
@staticmethod
def from_folder(
folder: Path,
max_batch_size: int,
max_seq_len: int,
num_pipeline_ranks: int = 1,
device="cuda",
dtype=torch.float16,
) -> "Transformer":
with open(folder / "params.json", "r") as f:
model_args = TransformerArgs.from_dict(json.load(f))
model_args.max_batch_size = max_batch_size
model_args.max_seq_len = max_seq_len
if num_pipeline_ranks > 1:
pipeline_rank = torch.distributed.get_rank()
else:
pipeline_rank = 0
with torch.device("meta"):
model = Transformer(
model_args,
pipeline_rank=pipeline_rank,
num_pipeline_ranks=num_pipeline_ranks,
)
pt_model_file = Path(folder) / "consolidated.00.pth"
safetensors_model_file = Path(folder) / "consolidated.safetensors"
assert (
pt_model_file.exists() or safetensors_model_file.exists()
), f"Make sure either {pt_model_file} or {safetensors_model_file} exists"
assert not (
pt_model_file.exists() and safetensors_model_file.exists()
), f"Both {pt_model_file} and {safetensors_model_file} cannot exist"
if pt_model_file.exists():
loaded = torch.load(str(pt_model_file), mmap=True)
else:
loaded = safetensors.torch.load_file(str(safetensors_model_file))
model.load_state_dict(loaded, assign=True, strict=True)
return model.to(device=device, dtype=dtype)
def load_tokenizer(model_path: Path) -> MistralTokenizer:
tokenizer = [f for f in os.listdir(Path(model_path)) if f.startswith("tokenizer.model")]
assert (
len(tokenizer) == 1
), f"Multiple tokenizers {', '.join(tokenizer)} found in `model_path`, make sure to only have one tokenizer"
tokenizer = MistralTokenizer.from_file(str(model_path / tokenizer[0]))
return tokenizer
@torch.no_grad()
def generate(prompts: List[str], model: Transformer, tokenizer: Tokenizer, max_tokens: int):
encoded_prompts = [tokenizer.encode(prompt, bos=True, eos=False) for prompt in prompts]
prompt_lens = [len(x) for x in encoded_prompts]
min_prompt_len = min(prompt_lens)
max_prompt_len = max(prompt_lens)
input_tokens = torch.full(
(len(prompts), max_prompt_len),
tokenizer._model.pad_id(),
dtype=torch.long,
device="cuda",
)
for i, encoded in enumerate(encoded_prompts):
input_tokens[i, : len(encoded)] = torch.tensor(encoded).to(input_tokens)
input_mask = input_tokens != tokenizer._model.pad_id()
# pre-fill
positions = torch.arange(0, min_prompt_len).to("cuda")
logits = model.forward(input_tokens[:, :min_prompt_len], positions)
logprobs = nn.functional.log_softmax(logits, dim=-1)
# decode
generated = []
all_logprobs = [
logprobs[:, :-1, :].gather(2, input_tokens[:, 1:min_prompt_len, None]).squeeze(-1),
]
for cur_pos in range(min_prompt_len, max_tokens):
next_token = torch.argmax(logprobs[:, -1, :], dim=-1)
if cur_pos < input_mask.shape[1]:
next_token = torch.where(input_mask[:, cur_pos], input_tokens[:, cur_pos], next_token)
all_logprobs.append(
logprobs[:, -1, :].gather(1, next_token[:, None]),
)
generated.append(next_token[:, None])
logits = model.forward(next_token[:, None], torch.LongTensor([cur_pos]).to(next_token))
logprobs = nn.functional.log_softmax(logits, dim=-1)
all_logprobs_merged = torch.cat(all_logprobs, 1)
res = []
if max_tokens > 0:
generated = torch.cat(generated, 1)
for i, x in enumerate(encoded_prompts):
res.append(tokenizer.decode(x[:min_prompt_len] + generated[i].tolist()))
return res, all_logprobs_merged
def demo(model_path: str, max_tokens: int = 30):
if is_torchrun():
torch.distributed.init_process_group()
torch.cuda.set_device(torch.distributed.get_rank())
should_print = torch.distributed.get_rank() == 0
num_pipeline_ranks = torch.distributed.get_world_size()
else:
should_print = True
num_pipeline_ranks = 1
mistral_tokenizer: MistralTokenizer = load_tokenizer(Path(model_path))
tokenizer: Tokenizer = mistral_tokenizer.instruct_tokenizer.tokenizer
transformer = Transformer.from_folder(
Path(model_path),
max_batch_size=3,
max_seq_len=max_tokens,
num_pipeline_ranks=num_pipeline_ranks,
)
res, logprobs = generate(
[
"This is a test",
"This is another great test",
"This is a third test, mistral AI is very good at testing. ",
],
transformer,
tokenizer,
max_tokens=max_tokens,
)
if should_print:
for x, log_prob in zip(res, logprobs):
print(x)
logging.debug("logprobs: %s", log_prob)
print("=====================")
if __name__ == "__main__":
fire.Fire(demo)