-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathode_model.py
43 lines (32 loc) · 1.42 KB
/
ode_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Copyright 2022 Yuan Yin & Matthieu Kirchmeyer
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from network import MLP, FourierNet
from torch import nn
class Derivative(nn.Module):
def __init__(self, state_c, code_c, hidden_c, **kwargs):
super().__init__()
input_dim = code_c * state_c
self.net = MLP(input_dim, hidden_c, nl='swish')
def forward(self, t, u):
return self.net(u)
class Decoder(nn.Module):
def __init__(self, state_c, hidden_c, code_c, coord_dim, n_layers, **kwargs):
super().__init__()
self.state_c = state_c
self.hidden_c = hidden_c
self.coord_dim = coord_dim
self.out_dim = 1
self.code_dim = code_c
self.net = FourierNet(self.coord_dim, self.hidden_c, self.code_dim, self.out_dim, n_layers, input_scale=64)
def forward(self, x, codes=None):
if codes is None:
return self.net(x)
return self.net(x, codes)