-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
487 lines (432 loc) · 22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
# Copyright 2022 Yuan Yin & Matthieu Kirchmeyer
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from torch.utils.data import DataLoader
from torch.nn import init
from torch import nn
import shelve
from data_pdes import WaveDataset, NavierStokesDataset, ShallowWaterDataset, SST
import math
import torch
from logging.handlers import RotatingFileHandler
import logging
import os
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
from torchdiffeq import odeint
def process_config(input_dataset, path_results, device="gpu:0", mask_data=0.0, n_frames_train=10):
if input_dataset == "wave":
state_dim = 2
code_dim = 50
size = 64
hidden_c = 256
hidden_c_enc = 64
n_layers = 3
minibatch_size = 32
dataset_tr_params = {
"n_seq": 512, "n_seq_per_traj": 8, "t_horizon": 5, "dt": 0.25, "size": size, "group": "train",
'n_frames_train': n_frames_train, "param": {"speed": 1/16, 'bc': 'periodic'}}
dataset_tr_eval_params = dict()
dataset_tr_eval_params.update(dataset_tr_params)
dataset_tr_eval_params["group"] = "train_eval"
dataset_ts_params = dict()
dataset_ts_params.update(dataset_tr_params)
dataset_ts_params["group"] = "test"
buffer_file_tr = f"{path_results}/wave_train.shelve"
buffer_shelve_tr = buffer_shelve_tr_eval = shelve.open(buffer_file_tr)
buffer_file_ts = f"{path_results}/wave_test.shelve"
buffer_shelve_ts = shelve.open(buffer_file_ts)
dataset_ts_params["n_seq"] = 32
dataset_tr = WaveDataset(buffer_shelve=buffer_shelve_tr, **dataset_tr_params)
dataset_tr_eval = WaveDataset(buffer_shelve=buffer_shelve_tr_eval, **dataset_tr_eval_params)
dataset_ts = WaveDataset(buffer_shelve=buffer_shelve_ts, **dataset_ts_params)
coord_dim = dataset_tr.coord_dim
elif input_dataset == "navier_stokes":
state_dim = 1
code_dim = 100
coord_dim = 2
hidden_c = 512
hidden_c_enc = 64
n_layers = 3
size = 64
n_seq = 512
t_horizon = 20
minibatch_size = 32
tt = torch.linspace(0, 1, size + 1)[0:-1]
X, Y = torch.meshgrid(tt, tt)
visc = 1e-3
dataset_tr_params = {
"device": "cuda:0", "n_seq": n_seq, "n_seq_per_traj": 2, "t_horizon": t_horizon, "dt": 1, "size": size,
"group": "train", 'n_frames_train': n_frames_train,
"param": {"f": 0.1 * (torch.sin(2 * math.pi * (X + Y)) + torch.cos(2 * math.pi * (X + Y))), "visc": visc}
}
dataset_tr_eval_params = dict()
dataset_tr_eval_params.update(dataset_tr_params)
dataset_tr_eval_params["group"] = "train_eval"
dataset_ts_params = dict()
dataset_ts_params.update(dataset_tr_params)
dataset_ts_params["group"] = "test"
dataset_ts_params["n_seq"] = 32
buffer_file_tr = f"{path_results}/navier_1e-3_train.shelve"
buffer_file_ts = f"{path_results}/navier_1e-3_test.shelve"
buffer_shelve_tr = buffer_shelve_tr_eval = shelve.open(buffer_file_tr)
buffer_shelve_ts = shelve.open(buffer_file_ts)
dataset_tr = NavierStokesDataset(buffer_shelve=buffer_shelve_tr, **dataset_tr_params)
dataset_tr_eval = NavierStokesDataset(buffer_shelve=buffer_shelve_tr_eval, **dataset_tr_eval_params)
dataset_ts = NavierStokesDataset(buffer_shelve=buffer_shelve_ts, **dataset_ts_params)
elif "shallow_water" in input_dataset:
state_dim = 2
coord_dim = 3
code_dim = 200
hidden_c = 800
hidden_c_enc = 256
n_layers = 6
minibatch_size = 4
size = (128, 64)
n_seq = 64
dataset_tr_params = {
'dataset_name': 'shallow_water', 'root': f'{path_results}', # Path to your generated data.
"device": "cuda:0", 'buffer_shelve': None, "n_seq": n_seq, "n_seq_per_traj": 8, "t_horizon": 20, "dt": 1,
"size": size, "group": "train", 'n_frames_train': n_frames_train
}
dataset_tr_eval_params = dict()
dataset_tr_eval_params.update(dataset_tr_params)
dataset_tr_eval_params["group"] = "train_eval"
dataset_ts_params = dict()
dataset_ts_params.update(dataset_tr_params)
dataset_ts_params["group"] = "test" if not "hr" in input_dataset else "test_hr"
dataset_ts_params["n_seq"] = 16
dataset_tr = ShallowWaterDataset(**dataset_tr_params)
dataset_tr_eval = ShallowWaterDataset(**dataset_tr_eval_params)
dataset_ts = ShallowWaterDataset(**dataset_ts_params)
elif input_dataset == "sst":
state_dim = 1
coord_dim = 2
code_dim = 400
hidden_c = 800
hidden_c_enc = 256
n_layers = 6
minibatch_size = 32
size = (64, 64)
dataset_tr_params = {
'data_dir': '/path/to/sst/dataset',
'nt_cond': 4,
'nt_pred': 6,
'train': True,
'zones': range(17, 21),
}
dataset_ts_params = dict()
dataset_ts_params.update(dataset_tr_params)
dataset_ts_params["train"] = False
dataset_ts_params["zones"] = range(17, 21)
dataset_tr = SST(**dataset_tr_params)
dataset_ts = SST(**dataset_ts_params)
dataset_tr_eval = dataset_ts
dataset_tr_params['n_seq'] = len(dataset_tr)
dataset_ts_params['n_seq'] = len(dataset_ts)
dataset_tr_eval_params = dataset_tr_params
else:
raise Exception(f"{input_dataset} does not exist")
if isinstance(size, int):
size = (size, size)
n_mask = 1
mask = generate_mask(size[0], size[1], device, mask_data, n_mask)
mask_ts = mask
if input_dataset == "shallow_water_hs":
mask = generate_skipped_lat_lon_mask(dataset_tr.coords_ang, device).bool()
mask_ts = generate_skipped_lat_lon_mask(dataset_ts.coords_ang, device, base_jump=1).bool()
elif input_dataset == "shallow_water":
mask = generate_skipped_lat_lon_mask(dataset_tr.coords_ang, device).bool()
mask_ts = mask
dataloader_tr = DataLoaderODE(dataset_tr, minibatch_size)
dataloader_tr_eval = DataLoaderODE(dataset_tr_eval, minibatch_size, is_train=False)
dataloader_ts = DataLoaderODE(dataset_ts, minibatch_size, is_train=False)
return mask, mask_ts, size, state_dim, coord_dim, code_dim, hidden_c, hidden_c_enc, n_layers, \
dataset_tr_params, dataset_tr_eval_params, dataset_ts_params, dataloader_tr, dataloader_tr_eval, dataloader_ts
def generate_skipped_lat_lon_mask(coords, device, base_jump=0):
lons = coords[:, 0, 0].cpu().numpy()
lats = coords[0, :, 1].cpu().numpy()
n_lon = lons.size
delta_dis_equator = 2 * np.pi * 1 / n_lon
mask_list = []
for lat in lats:
delta_dis_lat = 2 * np.pi * np.sin(lat) / n_lon
ratio = delta_dis_lat / delta_dis_equator
n = int(np.ceil(np.log(ratio) / np.log(2/5)))
mask = torch.zeros(n_lon)
mask[::2 ** (n-1 + base_jump)] = 1
mask_list.append(mask)
mask = torch.stack(mask_list, dim=-1)
return mask.to(device)
def generate_mask(h_size, w_size, device, mask_data=0, n_mask=1):
mask_list = []
for _ in range(n_mask):
mask_list.append((torch.rand(h_size, w_size) >= mask_data)[None, :])
mask = torch.cat(mask_list, dim=0).squeeze()
return mask.to(device)
def eval_dino(dataloader, net_dyn, net_dec, device, method, criterion, mask_data, mask, state_dim, code_dim,
coord_dim, n_frames_train=0, states_params=None, lr_adapt=0.0, dataset_params=None, n_steps=300,
save_best=True):
"""
In_t: loss within train horizon.
Out_t: loss outside train horizon.
In_s: loss within observation grid.
Out_s: loss outside observation grid.
loss: loss averaged across in_t/out_t and in_s/out_s
loss_in_t: loss averaged across in_s/out_s for in_t.
loss_in_t_in_s, loss_in_t_out_s: loss in_t + in_s / out_s
"""
loss, loss_out_t, loss_in_t, loss_in_t_in_s, loss_in_t_out_s, loss_out_t_in_s, loss_out_t_out_s = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
gts, mos = [], []
set_requires_grad(net_dec, False)
set_requires_grad(net_dyn, False)
for j, batch in enumerate(dataloader):
ground_truth = batch['data'].to(device)
t = batch['t'][0].to(device)
index = batch['index'].to(device)
model_input = batch['coords'].to(device)
b_size, t_size, h_size, w_size, _ = ground_truth.shape
if lr_adapt != 0.0:
loss_min_test = 1e30
states_params_out = nn.ParameterList([nn.Parameter(torch.zeros(1, code_dim * state_dim).to(device)) for _ in range(dataset_params["n_seq"])])
optim_states_out = torch.optim.Adam(states_params_out, lr=lr_adapt)
for i in range(n_steps):
states_params_index = [states_params_out[d] for d in index]
states_params_index = torch.stack(states_params_index, dim=1)
states = states_params_index.permute(1, 0, 2).view(b_size, 1, state_dim, code_dim)
model_input_exp = model_input.view(b_size, 1, h_size, w_size, 1, coord_dim)
model_input_exp = model_input_exp.expand(b_size, 1, h_size, w_size, state_dim, coord_dim)
model_output, _ = net_dec(model_input_exp, states)
loss_l2 = criterion(model_output[:, :, mask, :], ground_truth[:, 0:1, mask, :])
if loss_l2 < loss_min_test and save_best:
loss_min_test = loss_l2
best_states_params_index = states_params_index
loss_opt_new = loss_l2
loss_opt = loss_opt_new
optim_states_out.zero_grad(True)
loss_opt.backward()
optim_states_out.step()
if save_best:
states_params_index = best_states_params_index
with torch.no_grad():
if lr_adapt == 0.0:
states_params_index = [states_params[d] for d in index]
states_params_index = torch.stack(states_params_index, dim=1)
model_input_exp = model_input.view(b_size, 1, h_size, w_size, 1, coord_dim)
model_input_exp = model_input_exp.expand(b_size, t_size, h_size, w_size, state_dim, coord_dim)
codes = odeint(net_dyn, states_params_index[0], t, method=method) # t x batch x dim
codes = codes.permute(1, 0, 2).view(b_size, t_size, state_dim, code_dim) # batch x t x dim
model_output, _ = net_dec(model_input_exp, codes)
if n_frames_train != 0:
loss_in_t += criterion(model_output[:, :n_frames_train, :, :, :], ground_truth[:, :n_frames_train, :, :, :])
loss += criterion(model_output, ground_truth)
loss_out_t += criterion(model_output[:, n_frames_train:, :, :, :], ground_truth[:, n_frames_train:, :, :, :])
if mask_data != 0.0:
loss_in_t_in_s += criterion(model_output[:, :n_frames_train, mask, :], ground_truth[:, :n_frames_train, mask, :])
loss_in_t_out_s += criterion(model_output[:, :n_frames_train, ~mask, :], ground_truth[:, :n_frames_train, ~mask, :])
loss_out_t_in_s += criterion(model_output[:, n_frames_train:, mask, :], ground_truth[:, n_frames_train:, mask, :])
loss_out_t_out_s += criterion(model_output[:, n_frames_train:, ~mask, :], ground_truth[:, n_frames_train:, ~mask, :])
gts.append(ground_truth.cpu())
mos.append(model_output.cpu())
loss /= len(dataloader)
loss_in_t /= len(dataloader)
loss_out_t /= len(dataloader)
loss_out_t_in_s /= len(dataloader)
loss_out_t_out_s /= len(dataloader)
loss_in_t_in_s /= len(dataloader)
loss_in_t_out_s /= len(dataloader)
set_requires_grad(net_dec, True)
set_requires_grad(net_dyn, True)
return loss, loss_in_t, loss_in_t_in_s, loss_in_t_out_s, loss_out_t, loss_out_t_in_s, loss_out_t_out_s, gts, mos
def eval_dino_cond(dataloader, net_dyn, net_dec, net_cond, device, method, criterion, mask_data, mask, state_dim, code_dim,
coord_dim, n_frames_train=0, states_params=None, lr_adapt=0.0, input_dataset=None, n_steps=300, n_cond=4, is_test=True):
loss, loss_out_t, loss_in_t = 0.0, 0.0, 0.0
gts, mos, times, ss, pss, cs = [], [], [], [], [], []
set_requires_grad(net_dec, False)
set_requires_grad(net_dyn, False)
set_requires_grad(net_cond, False)
for j, batch in enumerate(dataloader):
ground_truth = batch['data'].to(device)
t = batch['t'][0][n_cond:].to(device)
b_size, t_size, h_size, w_size, _ = ground_truth.shape
index = batch['index'].to(device)
model_input = batch['coords'].to(device)
if lr_adapt != 0.0:
states_params_out = nn.ParameterList([nn.Parameter(torch.zeros(n_cond + 1, code_dim * state_dim).to(device)) for _ in range(b_size)])
optim_states_out = torch.optim.Adam(states_params_out, lr=lr_adapt)
for i in range(n_steps):
states_params_index = torch.stack(list(states_params_out), dim=1)
states = states_params_index.permute(1, 0, 2).view(b_size, n_cond + 1, state_dim, code_dim)
model_input_exp = model_input.view(b_size, 1, h_size, w_size, 1, coord_dim)
model_input_exp = model_input_exp.expand(b_size, n_cond + 1, h_size, w_size, state_dim, coord_dim)
model_output, _ = net_dec(model_input_exp, states)
loss_l2 = criterion(model_output[:, :, mask, :], ground_truth[:, :n_cond + 1, mask, :])
loss_opt_new = loss_l2
loss_opt = loss_opt_new
optim_states_out.zero_grad(True)
loss_opt.backward()
optim_states_out.step()
with torch.no_grad():
if lr_adapt == 0.0:
states_params_index = [states_params[d] for d in index]
states_params_index = torch.stack(states_params_index, dim=1)
states = states_params_index.permute(1, 0, 2).view(b_size, n_frames_train, state_dim, code_dim)
model_input_exp = model_input.view(b_size, 1, h_size, w_size, 1, coord_dim)
model_input_exp = model_input_exp.expand(b_size, t_size-n_cond, h_size, w_size, state_dim, coord_dim)
extra_state = net_cond(states_params_index[:n_cond].permute(1, 0, 2).detach().clone())
augmented_state = torch.cat([extra_state, states_params_index[n_cond].detach().clone()], dim=-1)
codes = odeint(net_dyn, augmented_state, t, method=method) # t x batch x dim
codes = codes[:, :, code_dim * state_dim:].permute(1, 0, 2).view(b_size, t.numel(), state_dim, code_dim) # batch x t x dim
model_output, _ = net_dec(model_input_exp, codes)
ground_truth_ = ground_truth[:, n_cond:n_frames_train, :, :, :]
model_output_ = model_output
if input_dataset == "sst":
mu_norm, std_norm = batch['mu_norm'].to(device).unsqueeze(-1), batch['std_norm'].to(device).unsqueeze(-1)
model_output_ = (model_output_ * std_norm) + mu_norm
ground_truth_ = (ground_truth_ * std_norm) + mu_norm
# Original space for MSE
mu_clim, std_clim = batch['mu_clim'].to(device).unsqueeze(-1), batch['std_clim'].to(device).unsqueeze(-1)
model_output_ = (model_output_ * std_clim) + mu_clim
ground_truth_ = (ground_truth_ * std_clim) + mu_clim
if n_frames_train != 0:
loss_in_t += criterion(model_output_[:, :n_frames_train-n_cond, :, :, :], ground_truth_)
loss += criterion(model_output_[:, :n_frames_train-n_cond, :, :, :], ground_truth_)
if mask_data != 0.0:
loss_in_t_in_s += criterion(model_output_[:, :n_frames_train, mask, :], ground_truth[:, :n_frames_train, mask, :])
loss_in_t_out_s += criterion(model_output_[:, :n_frames_train, ~mask, :], ground_truth[:, :n_frames_train, ~mask, :])
gts.append(ground_truth.cpu())
mos.append(model_output.cpu())
pss.append(torch.zeros(1))
times.append(t.cpu())
ss.append(states.cpu())
cs.append(codes.cpu())
print(j)
if not is_test:
break
loss /= (j+1)
loss_in_t /= (j+1)
set_requires_grad(net_dec, True)
set_requires_grad(net_dyn, True)
set_requires_grad(net_cond, True)
return loss, loss_in_t, gts, mos, times, ss, pss, cs
def scheduling(_int, _f, true_codes, t, epsilon, method='rk4'):
if epsilon < 1e-3:
epsilon = 0
if epsilon == 0:
codes = _int(_f, y0=true_codes[0], t=t, method=method)
else:
eval_points = np.random.random(len(t)) < epsilon
eval_points[-1] = False
eval_points = eval_points[1:]
start_i, end_i = 0, None
codes = []
for i, eval_point in enumerate(eval_points):
if eval_point == True:
end_i = i + 1
t_seg = t[start_i:end_i + 1]
res_seg = _int(_f, y0=true_codes[start_i], t=t_seg, method=method)
if len(codes) == 0:
codes.append(res_seg)
else:
codes.append(res_seg[1:])
start_i = end_i
t_seg = t[start_i:]
res_seg = _int(_f, y0=true_codes[start_i], t=t_seg, method=method)
if len(codes) == 0:
codes.append(res_seg)
else:
codes.append(res_seg[1:])
codes = torch.cat(codes, dim=0)
return codes
def init_weights(net, init_type='normal', init_gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1 or classname.find('Bilinear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
elif init_type == 'default':
pass
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if init_type != 'default' and hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm') != -1:
if m.weight is not None:
init.normal_(m.weight.data, 1.0, init_gain)
if m.bias is not None:
init.constant_(m.bias.data, 0.0)
net.apply(init_func)
def create_logger(folder, outfile):
try:
os.makedirs(folder)
print(f"Directory {folder} created")
except FileExistsError:
print(f"Directory {folder} already exists replacing files in this notebook")
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
file_handler = RotatingFileHandler(outfile, "w")
file_handler.setLevel(logging.DEBUG)
logger.addHandler(file_handler)
steam_handler = logging.StreamHandler()
steam_handler.setLevel(logging.DEBUG)
logger.addHandler(steam_handler)
return logger
def DataLoaderODE(dataset, minibatch_size, is_train=True):
dataloader_params = {
'dataset': dataset,
'batch_size': minibatch_size,
'shuffle': is_train,
'num_workers': 0, # for main thread
'pin_memory': True,
'drop_last': False
}
return DataLoader(**dataloader_params)
def write_image(batch_gt, batch_pred, state_idx, path, cmap='plasma', divider=1):
"""
Print reference trajectory (1st line) and predicted trajectory (2nd line).
Skip every N frames (N=divider)
"""
batch_gt = torch.permute(batch_gt, (1, 0, 2, 3, 4))
batch_pred = torch.permute(batch_pred, (1, 0, 2, 3, 4))
seq_len, batch_size, height, width, state_c = batch_gt.shape # [8, 20, 64, 64, 2]
t_horizon = math.ceil(seq_len / divider)
fig = plt.figure(figsize=(t_horizon, batch_size * 2.))
grid = ImageGrid(fig, 111, # similar to subplot(111)
nrows_ncols=(batch_size * 2, t_horizon), # creates 2x2 grid of axes
axes_pad=0.05) # pad between axes in inch.
for traj in range(batch_size):
vmax = torch.max(batch_gt[:, traj, :, :, :]).cpu().numpy()
vmin = torch.min(batch_gt[:, traj, :, :, :]).cpu().numpy()
for t in range(t_horizon):
# Iterating over the grid returns the Axes.
grid[2 * traj * t_horizon + t].imshow(batch_gt[divider * t, traj, :, :, state_idx].cpu().numpy(), vmax=vmax, vmin=vmin, cmap=cmap, interpolation='none')
if t - 4 >= 0:
grid[(2 * traj + 1) * t_horizon + t].imshow(batch_pred[divider * t - 4, traj, :, :, state_idx].cpu().numpy(), vmax=vmax, vmin=vmin, cmap=cmap, interpolation='none')
grid[2 * traj * t_horizon + t].set_axis_off()
grid[(2 * traj + 1) * t_horizon + t].set_axis_off()
plt.savefig(os.path.join(path), dpi=72, bbox_inches='tight', pad_inches=0)
plt.close(fig)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def set_requires_grad(module, tf=False):
module.requires_grad = tf
for param in module.parameters():
param.requires_grad = tf
def set_rdm_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)