-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstopper_block_v3.scad
193 lines (161 loc) · 7.63 KB
/
stopper_block_v3.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
3D model for a stopper block for a kite control bar. This device works in
tandem with a stopper ball to provide variable stop position for a kite
control bar that uses a twin-trimline.
Print one piece per control bar.
Recommend this be printed in PLA with 3 shells, 80 % infill and no supports.
Author: Philip B Chase, <[email protected]>
Assembly with ball: This component is designed to be assemble with a stopper ball using a 1/8" bungie. The bungie should be 155mm long. It should be routed through the small bore holes of the stopper ball and through the cross bore of the stopper block. The ends of the bungie should be blunt cut and super glued together. The resulting bungie is a continuous loop with slightly lumpy, stiff section where the ends are glued together.
Assembly into bar: The trim line end should be routed into a trim line hole from the narrow end of the block, through the center bore of the ball, through the center bore of the bar, through, a retaining ball, back through the center bore of the bar, back through the center bore of the ball, into the remain trim line hole of the block, and out the narrow end of the block.
Use: The ball is pulled down the trim line to lower the bar stop. The blokc is pulled up the trim line to raise the bar stop.
License: To the extent possible under law, Philip B Chase has waived all
copyright and related or neighboring rights to 3D model for a stopper
block for a kite control bar. This work is published from:
United States. See: http://creativecommons.org/publicdomain/zero/1.0/
*/
// stopper block for movable stopper
use <elliptical_torus.scad>;
use <trapezoided_cube.scad>;
$fn=36; // a circle has 36 sides
//bevel(r1=10, r2=8);
// provide dimensions of block from which all other shapes are removed
overall_width=34; // x
overall_depth=38; // y
overall_height=25; // z
// radii of block corners and edges
r_base = 2;
// block is narrowed at the kite end
width_near_kite = overall_width * 25/38 ;
// The upper half of the block is mostly cut away by a curved block
// The curved portion of this cut-away is has a radius of cut_away_radius
// the upper portion that is not cut away has a thickness of flag_line_path_thickness
// The main body of the block below the cut away has height thickness_of_main_body
cut_away_radius=8;
flag_line_path_thickness = 6;
thickness_of_main_body=12;
upper_cylinder_offset = 1;
ratio_of_upper_section_to_lower_section_depth = 0.25;
// Safety line dimensions
safety_line_diameter=9.5;
// Cross bore for bungie dimensions
cross_bore_depth=4;
cross_bore_width=10;
cross_bore_cl_to_end=12;
// trim hole line dimensions
trim_line_diameter=5;
trim_line_angle=8;
// Define magnet hole
magnet_radius=3/8*25.4/2;
magnet_height=3/8*25.4 - 0.5;
distance_back_from_front = overall_depth * 0.39;
oversize=1;
moveable_stopper();
module moveable_stopper() {
// make major trapezoidal prism
union() {
// Build base
difference() {
// Prism for Base
trapMatrixForBase = [
[1, 1, 1],
[width_near_kite/overall_width, 1, 1],
[1, 1, 1]
];
trapCube([overall_width, overall_depth, thickness_of_main_body], trapMatrixForBase, radius=r_base, round_z_negative=false);
// Drill trimline holes
trimline_holes();
// "Drill" curved path for bungie ball connector
bungie_ball_connector_path();
// Drill hole for magnet
magnet_hole();
}
// Upper section
difference() {
// Prism for Upper section
maximum_width_of_upper_section = (width_near_kite + (overall_width - width_near_kite) * ratio_of_upper_section_to_lower_section_depth) *0.96;
scale_in_x_along_increasing_y = width_near_kite/maximum_width_of_upper_section;
trapMatrixForUpper = [
[1, 1, 1],
[scale_in_x_along_increasing_y, 1, 1],
[1/1.618, 1/1.618, 1]
];
x_offset_of_upper_section = (overall_width - maximum_width_of_upper_section)/2 ;
translate([x_offset_of_upper_section, overall_depth * (1-ratio_of_upper_section_to_lower_section_depth), thickness_of_main_body - 2*r_base])
trapCube([maximum_width_of_upper_section, overall_depth * ratio_of_upper_section_to_lower_section_depth, overall_height - thickness_of_main_body +2*r_base], trapMatrixForUpper, radius=r_base, round_z_negative=true);
// Drill trimline holes
trimline_holes();
// Drill flag line path
flag_line_path();
}
}
}
module cut_away_upper() {
hull() {
// lower cylinder
translate([0, overall_depth - cut_away_radius - flag_line_path_thickness, thickness_of_main_body +cut_away_radius])
rotate([0,90,0])
cylinder(r=cut_away_radius,, h=overall_width);
// upper cylinder
translate([0, overall_depth - cut_away_radius - flag_line_path_thickness + upper_cylinder_offset, thickness_of_main_body +cut_away_radius*2])
rotate([0,90,0])
cylinder(r=cut_away_radius,, h=overall_width);
}
}
module trimline_holes(){
x_displacement = thickness_of_main_body*0.5;
trim_line_r = trim_line_diameter/2;
trim_line_drill_hole_length = overall_depth + trim_line_diameter;
// Reduce the facet count so that the upper surfaces are 22.5 degrees above horizontal.
$fn=8;
// Drill left trim line hole
translate([x_displacement,-trim_line_r,x_displacement])
rotate([-90,0,-trim_line_angle])
cylinder(r=trim_line_r, h=trim_line_drill_hole_length);
// Drill right trim line hole
translate([overall_width - x_displacement, -trim_line_r, x_displacement])
rotate([-90,0,trim_line_angle])
cylinder(r=trim_line_r, h=trim_line_drill_hole_length);
}
module bungie_ball_connector_path() {
translate([overall_width/2,-1.5,thickness_of_main_body/2])
rotate([0,90,0])
elliptical_torus(cross_bore_depth/2, cross_bore_width/2, thickness_of_main_body/2 + 1);
}
module magnet_hole() {
translate([overall_width/2, distance_back_from_front, 0])
rotate([0,0,0])
union() {
cylinder(r=magnet_radius,,h=magnet_height);
// Use a cone-shaped bottom to the magnet hole to reduce the
// risk of print overhang issues
translate([0,0,magnet_height])
cylinder(r1=magnet_radius,r2=0,h=magnet_radius*tan(25));
}
}
module flag_line_path() {
// Reduce the facet count so that the upper surfaces are 22.5 degrees above horizontal.
$fn=8;
translate([overall_width/2, -0.5, safety_line_diameter/2 + thickness_of_main_body])
rotate([-90,0,0])
union(){
// define major drill hole
cylinder(r=safety_line_diameter/2, h=overall_depth);
//define backside bevel
translate([0,0,overall_depth*0.95])
rotate([+8,0,0])
bevel(r1=safety_line_diameter/2+1.5, r2=safety_line_diameter/2);
//define frontside bevel
translate([0,0,overall_depth*(1-ratio_of_upper_section_to_lower_section_depth)*1.103])
rotate([+180,0,0])
rotate([-8,0,0])
bevel(r1=safety_line_diameter/2+1.5, r2=safety_line_diameter/2);
}
}
module bevel(r1, r2){
difference() {
cylinder(r=r1, h=r1-r2+1, $fn=30);
rotate_extrude(convexity = 10, $fn = 30)
translate([r1, 0, 0])
circle(r = r1-r2, $fn = 12);
}
}