-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradfrac.cpp
377 lines (333 loc) · 9.51 KB
/
radfrac.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/**
* \file Radiation fractionation model.
*/
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <cmath>
#include <cstdlib>
#include <map>
using namespace std;
#include "domain.h"
#include "random.h"
extern ostream & operator <<(ostream &os, const vector<double> &d);
class RFState {
double N;
double Gamma;
friend class RadFrac;
};
class RFParam {
double kN; // regrowth rate
double gamma; // Scheidegger's gamma
double alpha;
double beta;
int Tk; // time delay before regrowth
double K; // 'carrying capacity'
RFParam() {
kN = 0;
gamma = 0;
alpha = 0;
beta = 0;
Tk = 0;
K = 0;
}
friend ostream & operator <<(ostream &os, RFParam p) {
os << p.alpha << " ";
os << p.beta << " ";
os << p.kN << " ";
os << p.gamma << " ";
os << p.Tk << " ";
os << p.K;
return os;
}
friend class RadFrac;
};
class RadFrac: public Domain {
private:
double R0; // dose rate
double N0; // initial cell count
int NF; // total fractions
int F;
double T; // time per fraction, seconds
RFState tumorState;
RFState normalState;
double D; /* total dosage */
int rewardType; /* reward function to use */
double Amax;
double *Amap;
RFParam normal;
RFParam tumor;
/**
* Return the current state from the domain object.
*
* We need this function since this domain commits the "sin" of
* incorporating the state into the object itself. Most of our
* other domains avoid this. Need to think about how and if to
* make this design better.
*/
vector<double> getState() const {
vector<double> s;
s.resize(numDimensions);
switch (numDimensions) {
case 1:
s[0] = F;
break;
case 2:
s[0] = tumorState.N;
s[1] = normalState.N;
break;
case 3:
s[0] = tumorState.N;
s[1] = normalState.N;
s[2] = D;
break;
default:
s[0] = tumorState.N;
s[1] = normalState.N;
s[2] = F;
s[3] = D;
break;
}
return s;
}
public:
RadFrac() {
Amax = 1.0;
numActions = 11;
numDimensions = 4;
numSteps = 1000;
Amap = new double[numActions];
for (int i = 0; i < numActions; i++) {
Amap[i] = i * (Amax / (numActions - 1));
}
R0 = 0.64/60; // convert from Gy/min to Gy/sec
N0 = 1.0e11; // initial number of cells
NF = 4; // total number of fractions
T = 1*24*3600; // one day per fraction
rewardType = 3; // Default reward type.
tumor.alpha = 1.43; /* HT144 melanoma - Chapman */
tumor.beta = 0.13;
tumor.kN = 0.15/(3600*24); // convert from 1/day to 1/sec
tumor.gamma = 40.0/(3600*24); // convert from 1/day to 1/sec
tumor.Tk = 1;
tumor.K = 2*N0;
normal.alpha = 0.15; /* Fibrosis - Bentzen et al 1990 */
normal.beta = 0.079;
normal.kN = 0.15/(3600*24); // convert from 1/day to 1/sec
normal.gamma = 71.0/(3600*24); // convert from 1/day to 1/sec
normal.Tk = 0;
normal.K = N0;
reset();
}
// Just resets the state to its initial conditions.
void reset() {
F = 0;
normalState.N = tumorState.N = N0;
normalState.Gamma = tumorState.Gamma = 0;
D = 0;
}
void setFeatures(int n) { numDimensions = n; }
void initRandomly() { tumorState.N = N0 + (rndNorm() * N0/50.0); }
void loadProperties(const char *fname) {
if (fname == NULL) {
return;
}
ifstream in;
map<string,double> props;
in.open(fname);
if (in.fail()) {
cerr << "Can't open properties file: " << fname << endl;
exit(-1);
}
else {
string line;
while (getline(in, line)) {
string key;
double val;
if (line[0] != '#') {
istringstream iss(line);
if (!(iss >> key >> val)) {
if (key.length() > 0) {
cerr << key << "->" << val << endl;
cerr << "Problem reading properties file?" << endl;
}
break;
}
if (key.length() > 0) {
props[key] = val;
}
}
}
in.close();
}
if (props.count("dose-rate") > 0) {
R0 = props.at("dose-rate") / 60;
}
if (props.count("reward-type") > 0) {
rewardType = (int)props.at("reward-type");
}
if (props.count("fraction-interval") > 0) {
T = (int)(props.at("fraction-interval")*24*3600);
}
if (props.count("fraction-count") > 0) {
NF = (int)props.at("fraction-count");
}
if (props.count("tumor-alpha-fraction") > 0) {
tumor.alpha *= props.at("tumor-alpha-fraction");
}
if (props.count("tumor-beta-fraction") > 0) {
tumor.beta *= props.at("tumor-beta-fraction");
}
if (props.count("tumor-alpha") > 0) {
tumor.alpha = props.at("tumor-alpha");
}
if (props.count("tumor-beta") > 0) {
tumor.beta = props.at("tumor-beta");
}
if (props.count("normal-alpha") > 0) {
normal.alpha = props.at("normal-alpha");
}
if (props.count("normal-beta") > 0) {
normal.beta = props.at("normal-beta");
}
if (props.count("tumor-regrowth-rate") > 0) {
tumor.kN = props.at("tumor-regrowth-rate") / (3600 * 24);
}
if (props.count("normal-regrowth-rate") > 0) {
normal.kN = props.at("normal-regrowth-rate") / (3600 * 24);
}
if (props.count("tumor-gamma") > 0) {
tumor.gamma = props.at("tumor-gamma") / (3600*24);
}
if (props.count("normal-gamma") > 0) {
normal.gamma = props.at("normal-gamma") / (3600*24);
}
if (props.count("tumor-regrowth-delay") > 0) {
tumor.Tk = props.at("tumor-regrowth-delay") * 3600 * 24; /* convert from days to seconds */
}
if (props.count("tumor-k") > 0) {
tumor.K = props.at("tumor-k") * N0;
}
if (props.count("normal-k") > 0) {
normal.K = props.at("normal-k") * N0;
}
if (props.count("features") > 0) {
numDimensions = props.at("features");
}
}
int fractions() {
return NF;
}
void setFractions(int n) {
NF = n;
}
vector<double> initialState() {
vector<double> s;
s.resize(numDimensions);
// Need to return internal state to initial conditions here.
reset();
s[0] = tumorState.N;
s[1] = normalState.N;
s[2] = F;
s[3] = D;
return s;
}
bool isTerminal(vector<double> s) const {
return (s[2] >= NF);
}
double getReward(vector<double> s, int a) const {
double normalRatio = normalState.N / N0;
double tumorRatio = tumorState.N / N0;
if (normalRatio > 1.0) {
normalRatio = 1.0;
}
if (tumorRatio > 1.0) {
tumorRatio = 1.0;
}
switch (rewardType) {
case 1:
return (F == NF) ? (normalRatio * normalRatio - tumorRatio) : 0.0;
case 2:
return (F == NF) ? (normalRatio - sqrt(tumorRatio)) : 0.0;
case 3:
return (normalRatio < 0.90) ? -1.0 : (F == NF) ? (1.0 - tumorRatio) : 0;
case 11:
return (normalRatio * normalRatio) - sqrt(tumorRatio);
default:
return (normalRatio < 0.90) ? -1.0 : (F == NF) ? (1.0 - sqrt(tumorRatio)) : 0.0;
}
}
void scheidegger(const RFParam& param, double F, RFState& state) {
double R = R0;
double D = 0;
double dt = 0.05;
int X = (int)(1/dt);
int delay = 0;
if (F != 0.0) {
delay = param.Tk;
}
for (int t = 0; t < T; t++) {
// Integrate one second...
for (int i = 0; i < X; i++) {
// Check if we have passed the maximum dose.
if (D >= F) {
R = 0;
}
/* This is the equation for "second order" kinetics, we
* need to change if we want to do "first order" models.
* It's implied by equations 3 and 8 in the paper.
*/
double dGamma = R - param.gamma * state.Gamma * state.Gamma;
double dN;
/* This is equation 6 from the paper
*/
if (delay <= 0) {
if (param.K > 0.0)
dN = -(param.alpha + 2 * param.beta * state.Gamma) * R * state.N + param.kN * state.N * (1.0 - state.N / param.K);
else
dN = -(param.alpha + 2 * param.beta * state.Gamma) * R * state.N + param.kN * state.N;
}
else {
/* Delay regrowth if specified.
*/
dN = -(param.alpha + 2 * param.beta * state.Gamma) * R * state.N;
}
// Simple Euler integration of Gamma, N, and the dose
state.Gamma = state.Gamma + dt * dGamma;
state.N = state.N + dt * dN;
D = D + dt * R;
}
/* Decrement the regrowth delay if appropriate.
*/
if (delay > 0) {
delay--;
}
}
}
OneStepResult performAction(vector<double> s, int a) {
double FD = Amap[a];
// integrate tumor
scheidegger(tumor, FD, tumorState);
// integrate normal
scheidegger(normal, FD, normalState);
F += 1;
D += FD;
OneStepResult r(getState(), getReward(s, a));
return r;
}
void printParameters(ostream &os) {
os << "% " << NF << " " << T << " " << R0 << endl;
os << "% " << tumor << " " << normal << endl;
}
friend ostream & operator <<(ostream &os, RadFrac m) {
os << m.getState() << endl;
return os;
}
};
// public entry point to construct a RadFrac object.
Domain *getRF(const char *filename) {
RadFrac *rf = new RadFrac();
rf->loadProperties(filename);
return rf;
}