forked from phamxuansang241/Secure-Federated-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
98 lines (74 loc) · 3.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from tek4fed import get_args, server_lib
from tek4fed.summarizer_lib import FedAvg
from tek4fed.model_lib import get_model_function
from tek4fed.data_lib import DataSetup
from tek4fed.experiment_lib import Experiment, get_experiment_result
import json
import sys
import time
_supported_training_mode = ['fedavg', 'fed_compress', 'fed_ecc', 'fed_elgamal', 'dssgd']
# Argument parser and unpack JSON object
args = get_args()
with open(args.config_path, 'r') as openfile:
config = json.load(openfile)
global_config = config['global_config']
data_config = config['data_config']
fed_config = config['fed_config']
dp_config = config['dp_config']
# Setting experiment
experiment_config = {
'training_mode': global_config['training_mode'], 'name': global_config['name'], 'compress_digit': global_config['compress_digit'],
'dataset_name': data_config['dataset_name'], 'data_sampling_technique': data_config['data_sampling_technique'],
'overwrite_experiment': global_config['overwrite_experiment'],
'nb_clients': fed_config['nb_clients'], 'fraction': fed_config['fraction'], 'global_epochs': fed_config['global_epochs']
}
experiment = Experiment(experiment_config)
experiment.serialize_config(config)
# sys.stdout = open(experiment.log_path, "w")
# Creating server and client
server_config = {
'general_config': {
'checkpoint_path': global_config['checkpoint_path'],
'compress_digit': global_config['compress_digit'],
'dp_mode': global_config['dp_mode'],
'dataset_name': data_config['dataset_name'],
'global_weight_path': experiment.global_weight_path
},
'fed_config': fed_config,
'dp_config': dp_config
}
training_mode = global_config['training_mode']
server_cls = None
if training_mode == 'fedavg':
server_cls = server_lib.FedServer
elif global_config['training_mode'] == 'fed_compress':
server_cls = server_lib.FedCompressServer
elif global_config['training_mode'] == 'fed_elgamal':
server_cls = server_lib.ElGamalEncryptionServer
elif global_config['training_mode'] == 'fed_ecc':
server_cls = server_lib.EccEncryptionServer
elif global_config['training_mode'] == 'dssgd':
server_cls = server_lib.DssgdServer
server = server_cls(
model_fn=get_model_function(data_config['dataset_name'], global_config['dp_mode']),
weight_summarizer=FedAvg(),
server_config=server_config
)
server.global_weight_path = experiment.global_weight_path
server.create_clients()
# Preprocessing data and distributing data
DataSetup(data_config).setup(server)
# Set up clients
server.setup()
# Training model
print('[INFO] TRAINING MODEL ...')
assert global_config['training_mode'] in _supported_training_mode, "Unsupported training mode, this shouldn't happen"
start_time = time.perf_counter()
server.train()
end_time = time.perf_counter()
print(f'[INFO] TOTAL TIME FOR TRAINING ALL EPOCHS {end_time-start_time}')
# Evaluating model
print('[INFO] GET EXPERIMENT RESULTS ...')
get_experiment_result(server, experiment, data_config['dataset_name'])
# sys.stdout.close()
# sys.stdout = sys.__stdout__