-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathfuzzy.go
648 lines (593 loc) · 16.9 KB
/
fuzzy.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
package fuzzy
import (
"bufio"
"encoding/json"
"errors"
"fmt"
"index/suffixarray"
"io"
"log"
"os"
"regexp"
"sort"
"strings"
"sync"
)
const (
SpellDepthDefault = 2
SpellThresholdDefault = 5
SuffDivergenceThresholdDefault = 100
)
type Pair struct {
str1 string
str2 string
}
type Method int
const (
MethodIsWord Method = 0
MethodSuggestMapsToInput = 1
MethodInputDeleteMapsToDict = 2
MethodInputDeleteMapsToSuggest = 3
)
type Potential struct {
Term string // Potential term string
Score int // Score
Leven int // Levenstein distance from the suggestion to the input
Method Method // How this potential was matched
}
type Counts struct {
Corpus int `json:"corpus"`
Query int `json:"query"`
}
type Model struct {
Data map[string]*Counts `json:"data"`
Maxcount int `json:"maxcount"`
Suggest map[string][]string `json:"suggest"`
Depth int `json:"depth"`
Threshold int `json:"threshold"`
UseAutocomplete bool `json:"autocomplete"`
SuffDivergence int `json:"-"`
SuffDivergenceThreshold int `json:"suff_threshold"`
SuffixArr *suffixarray.Index `json:"-"`
SuffixArrConcat string `json:"-"`
sync.RWMutex
}
// For sorting autocomplete suggestions
// to bias the most popular first
type Autos struct {
Results []string
Model *Model
}
func (a Autos) Len() int { return len(a.Results) }
func (a Autos) Swap(i, j int) { a.Results[i], a.Results[j] = a.Results[j], a.Results[i] }
func (a Autos) Less(i, j int) bool {
icc := a.Model.Data[a.Results[i]].Corpus
jcc := a.Model.Data[a.Results[j]].Corpus
icq := a.Model.Data[a.Results[i]].Query
jcq := a.Model.Data[a.Results[j]].Query
if icq == jcq {
if icc == jcc {
return a.Results[i] > a.Results[j]
}
return icc > jcc
}
return icq > jcq
}
func (m Method) String() string {
switch m {
case MethodIsWord:
return "Input in dictionary"
case MethodSuggestMapsToInput:
return "Suggest maps to input"
case MethodInputDeleteMapsToDict:
return "Input delete maps to dictionary"
case MethodInputDeleteMapsToSuggest:
return "Input delete maps to suggest key"
}
return "unknown"
}
func (pot *Potential) String() string {
return fmt.Sprintf("Term: %v\n\tScore: %v\n\tLeven: %v\n\tMethod: %v\n\n", pot.Term, pot.Score, pot.Leven, pot.Method)
}
// Create and initialise a new model
func NewModel() *Model {
model := new(Model)
return model.Init()
}
func (model *Model) Init() *Model {
model.Data = make(map[string]*Counts)
model.Suggest = make(map[string][]string)
model.Depth = SpellDepthDefault
model.Threshold = SpellThresholdDefault // Setting this to 1 is most accurate, but "1" is 5x more memory and 30x slower processing than "4". This is a big performance tuning knob
model.UseAutocomplete = true // Default is to include Autocomplete
model.updateSuffixArr()
model.SuffDivergenceThreshold = SuffDivergenceThresholdDefault
return model
}
// WriteTo writes a model to a Writer
func (model *Model) WriteTo(w io.Writer) (int64, error) {
model.RLock()
defer model.RUnlock()
b, err := json.Marshal(model)
if err != nil {
return 0, err
}
n, err := w.Write(b)
if err != nil {
return int64(n), err
}
return int64(n), nil
}
// Save a spelling model to disk
func (model *Model) Save(filename string) error {
f, err := os.Create(filename)
if err != nil {
log.Println("Fuzzy model:", err)
return err
}
defer f.Close()
_, err = model.WriteTo(f)
if err != nil {
log.Println("Fuzzy model:", err)
return err
}
return nil
}
// Save a spelling model to disk, but discard all
// entries less than the threshold number of occurences
// Much smaller and all that is used when generated
// as a once off, but not useful for incremental usage
func (model *Model) SaveLight(filename string) error {
model.Lock()
for term, count := range model.Data {
if count.Corpus < model.Threshold {
delete(model.Data, term)
}
}
model.Unlock()
return model.Save(filename)
}
// FromReader loads a model from a Reader
func FromReader(r io.Reader) (*Model, error) {
model := new(Model)
d := json.NewDecoder(r)
err := d.Decode(model)
if err != nil {
return nil, err
}
model.updateSuffixArr()
return model, nil
}
// Load a saved model from disk
func Load(filename string) (*Model, error) {
f, err := os.Open(filename)
if err != nil {
return nil, err
}
defer f.Close()
model, err := FromReader(f)
if err != nil {
model = new(Model)
if err1 := model.convertOldFormat(filename); err1 != nil {
return model, err1
}
return model, nil
}
return model, nil
}
// Change the default depth value of the model. This sets how many
// character differences are indexed. The default is 2.
func (model *Model) SetDepth(val int) {
model.Lock()
model.Depth = val
model.Unlock()
}
// Change the default threshold of the model. This is how many times
// a term must be seen before suggestions are created for it
func (model *Model) SetThreshold(val int) {
model.Lock()
model.Threshold = val
model.Unlock()
}
// Optionally disabled suffixarray based autocomplete support
func (model *Model) SetUseAutocomplete(val bool) {
model.Lock()
old := model.UseAutocomplete
model.Unlock()
model.UseAutocomplete = val
if !old && val {
model.updateSuffixArr()
}
}
// Optionally set the suffix array divergence threshold. This is
// the number of query training steps between rebuilds of the
// suffix array. A low number will be more accurate but will use
// resources and create more garbage.
func (model *Model) SetDivergenceThreshold(val int) {
model.Lock()
model.SuffDivergenceThreshold = val
model.Unlock()
}
// Calculate the Levenshtein distance between two strings
func Levenshtein(a, b *string) int {
la := len(*a)
lb := len(*b)
d := make([]int, la+1)
var lastdiag, olddiag, temp int
for i := 1; i <= la; i++ {
d[i] = i
}
for i := 1; i <= lb; i++ {
d[0] = i
lastdiag = i - 1
for j := 1; j <= la; j++ {
olddiag = d[j]
min := d[j] + 1
if (d[j-1] + 1) < min {
min = d[j-1] + 1
}
if (*a)[j-1] == (*b)[i-1] {
temp = 0
} else {
temp = 1
}
if (lastdiag + temp) < min {
min = lastdiag + temp
}
d[j] = min
lastdiag = olddiag
}
}
return d[la]
}
// Add an array of words to train the model in bulk
func (model *Model) Train(terms []string) {
for _, term := range terms {
model.TrainWord(term)
}
model.updateSuffixArr()
}
// Manually set the count of a word. Optionally trigger the
// creation of suggestion keys for the term. This function lets
// you build a model from an existing dictionary with word popularity
// counts without needing to run "TrainWord" repeatedly
func (model *Model) SetCount(term string, count int, suggest bool) {
model.Lock()
model.Data[term] = &Counts{count, 0} // Note: This may reset a query count? TODO
if suggest {
model.createSuggestKeys(term)
}
model.Unlock()
}
// Train the model word by word. This is corpus training as opposed
// to query training. Word counts from this type of training are not
// likely to correlate with those of search queries
func (model *Model) TrainWord(term string) {
model.Lock()
if t, ok := model.Data[term]; ok {
t.Corpus++
} else {
model.Data[term] = &Counts{1, 0}
}
// Set the max
if model.Data[term].Corpus > model.Maxcount {
model.Maxcount = model.Data[term].Corpus
model.SuffDivergence++
}
// If threshold is triggered, store delete suggestion keys
if model.Data[term].Corpus == model.Threshold {
model.createSuggestKeys(term)
}
model.Unlock()
}
// Train using a search query term. This builds a second popularity
// index of terms used to search, as opposed to generally occurring
// in corpus text
func (model *Model) TrainQuery(term string) {
model.Lock()
if t, ok := model.Data[term]; ok {
t.Query++
} else {
model.Data[term] = &Counts{0, 1}
}
model.SuffDivergence++
update := model.SuffDivergence > model.SuffDivergenceThreshold
model.Unlock()
if update {
model.updateSuffixArr()
}
}
// For a given term, create the partially deleted lookup keys
func (model *Model) createSuggestKeys(term string) {
edits := model.EditsMulti(term, model.Depth)
for _, edit := range edits {
if len(edit) <= 1 {
continue
}
skip := false
for _, hit := range model.Suggest[edit] {
if hit == term {
// Already know about this one
skip = true
break
}
}
if !skip {
model.Suggest[edit] = append(model.Suggest[edit], term)
}
}
}
// Edits at any depth for a given term. The depth of the model is used
func (model *Model) EditsMulti(term string, depth int) []string {
edits := Edits1(term)
for {
depth--
if depth <= 0 {
break
}
for _, edit := range edits {
edits = append(edits, Edits1(edit)...)
}
}
return edits
}
// Edits1 creates a set of terms that are 1 char delete from the input term
func Edits1(word string) []string {
total_set := make([]string, 0, len(word)+2)
for i := 0; i < len(word); i++ {
// delete ith character
total_set = append(total_set, word[:i]+word[i+1:])
}
total_set = append(total_set, word)
// Special case ending in "ies" or "ys"
if strings.HasSuffix(word, "ies") {
total_set = append(total_set, word[:len(word)-3]+"ys")
}
if strings.HasSuffix(word, "ys") {
total_set = append(total_set, word[:len(word)-2]+"ies")
}
return total_set
}
func (model *Model) corpusCount(input string) int {
if score, ok := model.Data[input]; ok {
return score.Corpus
}
return 0
}
// From a group of potentials, work out the most likely result
func best(input string, potential map[string]*Potential) string {
var best string
var bestcalc, bonus int
for i := 0; i < 4; i++ {
for _, pot := range potential {
if pot.Leven == 0 {
return pot.Term
} else if pot.Leven == i {
bonus = 0
// If the first letter is the same, that's a good sign. Bias these potentials
if pot.Term[0] == input[0] {
bonus += 100
}
if pot.Score+bonus > bestcalc {
bestcalc = pot.Score + bonus
best = pot.Term
}
}
}
if bestcalc > 0 {
return best
}
}
return best
}
// From a group of potentials, work out the most likely results, in order of
// best to worst
func bestn(input string, potential map[string]*Potential, n int) []string {
var output []string
for i := 0; i < n; i++ {
if len(potential) == 0 {
break
}
b := best(input, potential)
output = append(output, b)
delete(potential, b)
}
return output
}
// Test an input, if we get it wrong, look at why it is wrong. This
// function returns a bool indicating if the guess was correct as well
// as the term it is suggesting. Typically this function would be used
// for testing, not for production
func (model *Model) CheckKnown(input string, correct string) bool {
model.RLock()
defer model.RUnlock()
suggestions := model.suggestPotential(input, true)
best := best(input, suggestions)
if best == correct {
// This guess is correct
fmt.Printf("Input correctly maps to correct term")
return true
}
if pot, ok := suggestions[correct]; !ok {
if model.corpusCount(correct) > 0 {
fmt.Printf("\"%v\" - %v (%v) not in the suggestions. (%v) best option.\n", input, correct, model.corpusCount(correct), best)
for _, sugg := range suggestions {
fmt.Printf(" %v\n", sugg)
}
} else {
fmt.Printf("\"%v\" - Not in dictionary\n", correct)
}
} else {
fmt.Printf("\"%v\" - (%v) suggested, should however be (%v).\n", input, suggestions[best], pot)
}
return false
}
// For a given input term, suggest some alternatives. If exhaustive, each of the 4
// cascading checks will be performed and all potentials will be sorted accordingly
func (model *Model) suggestPotential(input string, exhaustive bool) map[string]*Potential {
input = strings.ToLower(input)
suggestions := make(map[string]*Potential, 20)
// 0 - If this is a dictionary term we're all good, no need to go further
if model.corpusCount(input) > model.Threshold {
suggestions[input] = &Potential{Term: input, Score: model.corpusCount(input), Leven: 0, Method: MethodIsWord}
if !exhaustive {
return suggestions
}
}
// 1 - See if the input matches a "suggest" key
if sugg, ok := model.Suggest[input]; ok {
for _, pot := range sugg {
if _, ok := suggestions[pot]; !ok {
suggestions[pot] = &Potential{Term: pot, Score: model.corpusCount(pot), Leven: Levenshtein(&input, &pot), Method: MethodSuggestMapsToInput}
}
}
if !exhaustive {
return suggestions
}
}
// 2 - See if edit1 matches input
max := 0
edits := model.EditsMulti(input, model.Depth)
for _, edit := range edits {
score := model.corpusCount(edit)
if score > 0 && len(edit) > 2 {
if _, ok := suggestions[edit]; !ok {
suggestions[edit] = &Potential{Term: edit, Score: score, Leven: Levenshtein(&input, &edit), Method: MethodInputDeleteMapsToDict}
}
if score > max {
max = score
}
}
}
if max > 0 {
if !exhaustive {
return suggestions
}
}
// 3 - No hits on edit1 distance, look for transposes and replaces
// Note: these are more complex, we need to check the guesses
// more thoroughly, e.g. levals=[valves] in a raw sense, which
// is incorrect
for _, edit := range edits {
if sugg, ok := model.Suggest[edit]; ok {
// Is this a real transpose or replace?
for _, pot := range sugg {
lev := Levenshtein(&input, &pot)
if lev <= model.Depth+1 { // The +1 doesn't seem to impact speed, but has greater coverage when the depth is not sufficient to make suggestions
if _, ok := suggestions[pot]; !ok {
suggestions[pot] = &Potential{Term: pot, Score: model.corpusCount(pot), Leven: lev, Method: MethodInputDeleteMapsToSuggest}
}
}
}
}
}
return suggestions
}
// Return the raw potential terms so they can be ranked externally
// to this package
func (model *Model) Potentials(input string, exhaustive bool) map[string]*Potential {
model.RLock()
defer model.RUnlock()
return model.suggestPotential(input, exhaustive)
}
// For a given input string, suggests potential replacements
func (model *Model) Suggestions(input string, exhaustive bool) []string {
model.RLock()
suggestions := model.suggestPotential(input, exhaustive)
model.RUnlock()
output := make([]string, 0, 10)
for _, suggestion := range suggestions {
output = append(output, suggestion.Term)
}
return output
}
// Return the most likely correction for the input term
func (model *Model) SpellCheck(input string) string {
model.RLock()
suggestions := model.suggestPotential(input, false)
model.RUnlock()
return best(input, suggestions)
}
// Return the most likely corrections in order from best to worst
func (model *Model) SpellCheckSuggestions(input string, n int) []string {
model.RLock()
suggestions := model.suggestPotential(input, true)
model.RUnlock()
return bestn(input, suggestions, n)
}
func SampleEnglish() []string {
var out []string
file, err := os.Open("data/big.txt")
if err != nil {
fmt.Println(err)
return out
}
reader := bufio.NewReader(file)
scanner := bufio.NewScanner(reader)
scanner.Split(bufio.ScanLines)
// Count the words.
count := 0
for scanner.Scan() {
exp, _ := regexp.Compile("[a-zA-Z]+")
words := exp.FindAll([]byte(scanner.Text()), -1)
for _, word := range words {
if len(word) > 1 {
out = append(out, strings.ToLower(string(word)))
count++
}
}
}
if err := scanner.Err(); err != nil {
fmt.Fprintln(os.Stderr, "reading input:", err)
}
return out
}
// Takes the known dictionary listing and creates a suffix array
// model for these terms. If a model already existed, it is discarded
func (model *Model) updateSuffixArr() {
if !model.UseAutocomplete {
return
}
model.RLock()
termArr := make([]string, 0, 1000)
for term, count := range model.Data {
if count.Corpus > model.Threshold || count.Query > 0 { // TODO: query threshold?
termArr = append(termArr, term)
}
}
model.SuffixArrConcat = "\x00" + strings.Join(termArr, "\x00") + "\x00"
model.SuffixArr = suffixarray.New([]byte(model.SuffixArrConcat))
model.SuffDivergence = 0
model.RUnlock()
}
// For a given string, autocomplete using the suffix array model
func (model *Model) Autocomplete(input string) ([]string, error) {
model.RLock()
defer model.RUnlock()
if !model.UseAutocomplete {
return []string{}, errors.New("Autocomplete is disabled")
}
if len(input) == 0 {
return []string{}, errors.New("Input cannot have length zero")
}
express := "\x00" + input + "[^\x00]*"
match, err := regexp.Compile(express)
if err != nil {
return []string{}, err
}
matches := model.SuffixArr.FindAllIndex(match, -1)
a := &Autos{Results: make([]string, 0, len(matches)), Model: model}
for _, m := range matches {
str := strings.Trim(model.SuffixArrConcat[m[0]:m[1]], "\x00")
if count, ok := model.Data[str]; ok {
if count.Corpus > model.Threshold || count.Query > 0 {
a.Results = append(a.Results, str)
}
}
}
sort.Sort(a)
if len(a.Results) >= 10 {
return a.Results[:10], nil
}
return a.Results, nil
}