-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
108 lines (96 loc) · 3.32 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# from datasets.kinetics import Kinetics
# from datasets.activitynet import ActivityNet
from datasets.ucf101 import UCF101, KTH
# from datasets.hmdb51 import HMDB51
def get_training_set(opt, spatial_transform, temporal_transform,
target_transform):
if opt.dataset == 'ucf101':
training_data = UCF101(
opt.video_path,
opt.annotation_path,
'training',
spatial_transform=spatial_transform,
temporal_transform=temporal_transform,
target_transform=target_transform)
if opt.dataset == 'kth':
training_data = KTH(
opt.video_path,
opt.annotation_path,
'training',
spatial_transform=spatial_transform,
temporal_transform=temporal_transform,
target_transform=target_transform,
sample_duration=opt.sample_duration)
return training_data
def get_validation_set(opt, spatial_transform, temporal_transform,
target_transform):
if opt.dataset == 'ucf101':
validation_data = UCF101(
opt.video_path,
opt.annotation_path,
'validation',
opt.n_val_samples,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration)
if opt.dataset == 'kth':
validation_data = KTH(
opt.video_path,
opt.annotation_path,
'validation',
opt.n_val_samples,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration)
return validation_data
# def get_test_set(opt, spatial_transform, temporal_transform, target_transform):
# assert opt.dataset in ['kinetics', 'activitynet', 'ucf101', 'hmdb51']
# assert opt.test_subset in ['val', 'test']
# if opt.test_subset == 'val':
# subset = 'validation'
# elif opt.test_subset == 'test':
# subset = 'testing'
# if opt.dataset == 'kinetics':
# test_data = Kinetics(
# opt.video_path,
# opt.annotation_path,
# subset,
# 0,
# spatial_transform,
# temporal_transform,
# target_transform,
# sample_duration=opt.sample_duration)
# elif opt.dataset == 'activitynet':
# test_data = ActivityNet(
# opt.video_path,
# opt.annotation_path,
# subset,
# True,
# 0,
# spatial_transform,
# temporal_transform,
# target_transform,
# sample_duration=opt.sample_duration)
# elif opt.dataset == 'ucf101':
# test_data = UCF101(
# opt.video_path,
# opt.annotation_path,
# subset,
# 0,
# spatial_transform,
# temporal_transform,
# target_transform,
# sample_duration=opt.sample_duration)
# elif opt.dataset == 'hmdb51':
# test_data = HMDB51(
# opt.video_path,
# opt.annotation_path,
# subset,
# 0,
# spatial_transform,
# temporal_transform,
# target_transform,
# sample_duration=opt.sample_duration)
# return test_data