diff --git a/README.md b/README.md
index 4a6d975e..67bf1c35 100644
--- a/README.md
+++ b/README.md
@@ -53,15 +53,16 @@ A local installation of Python (it has been tested with [version 2.7.13](https:/
#### STEP 2: Download PCGR
-April 12th 2017: New release (v0.3)
-1. Download and unpack the [latest release (v0.3)](https://github.com/sigven/pcgr/releases/latest)
+April 12th 2017: New release (0.3.1)
+
+1. Download and unpack the [latest release (0.3.1)](https://github.com/sigven/pcgr/releases/latest)
2. Download and unpack the data bundle (approx. 17Gb) in the PCGR directory
- * Download [the latest data bundle](https://drive.google.com/file/d/0B8aYD2TJ472mQjZOMmg4djZfT1k/) from Google Drive to `~/pcgr-X.X` (replace _X.X_ with the version number, e.g `~/pcgr-0.3`)
+ * Download [the latest data bundle](https://drive.google.com/file/d/0B8aYD2TJ472mQjZOMmg4djZfT1k/) from Google Drive to `~/pcgr-X.X` (replace _X.X_ with the version number, e.g `~/pcgr-0.3.1`)
* Unpack the data bundle, e.g. through the following Unix command: `gzip -dc pcgr.databundle.GRCh37.YYYYMMDD.tgz | tar xvf -`
A _data/_ folder within the _pcgr-X.X_ software folder should now have been produced
-3. Pull the [PCGR Docker image (v0.3)](https://hub.docker.com/r/sigven/pcgr/) from DockerHub (3.1Gb):
- * `docker pull sigven/pcgr:0.3` (PCGR annotation engine)
+3. Pull the [PCGR Docker image (0.3.1)](https://hub.docker.com/r/sigven/pcgr/) from DockerHub (3.1Gb):
+ * `docker pull sigven/pcgr:0.3.1` (PCGR annotation engine)
#### STEP 3: Input preprocessing
@@ -111,7 +112,7 @@ A tumor sample report is generated by calling the Python script __pcgr.py__ in t
positional arguments:
pcgr_dir PCGR base directory with accompanying data directory,
- e.g. ~/pcgr-0.3
+ e.g. ~/pcgr-0.3.1
output_dir Output directory
sample_id Tumor sample/cancer genome identifier - prefix for
output files
@@ -145,7 +146,7 @@ A tumor sample report is generated by calling the Python script __pcgr.py__ in t
The _examples_ folder contain sample files from TCGA. A report for a colorectal tumor case can be generated through the following command:
-`python pcgr.py --input_vcf tumor_sample.COAD.vcf.gz --input_cna_segments tumor_sample.COAD.cna.tsv ~/pcgr-0.3 ~/pcgr-0.3/examples tumor_sample.COAD`
+`python pcgr.py --input_vcf tumor_sample.COAD.vcf.gz --input_cna_segments tumor_sample.COAD.cna.tsv ~/pcgr-0.3.1 ~/pcgr-0.3.1/examples tumor_sample.COAD`
This command will run the Docker-based PCGR workflow and produce the following output files in the _examples_ folder:
diff --git a/docs/_build/doctrees/environment.pickle b/docs/_build/doctrees/environment.pickle
index 1c389d7f..b362ed94 100644
Binary files a/docs/_build/doctrees/environment.pickle and b/docs/_build/doctrees/environment.pickle differ
diff --git a/docs/_build/doctrees/getting_started.doctree b/docs/_build/doctrees/getting_started.doctree
index ece9cf89..ca54be24 100644
Binary files a/docs/_build/doctrees/getting_started.doctree and b/docs/_build/doctrees/getting_started.doctree differ
diff --git a/docs/_build/html/_sources/getting_started.rst.txt b/docs/_build/html/_sources/getting_started.rst.txt
index 4faca462..35ddf1c0 100644
--- a/docs/_build/html/_sources/getting_started.rst.txt
+++ b/docs/_build/html/_sources/getting_started.rst.txt
@@ -42,10 +42,10 @@ terminal window.
Download PCGR
^^^^^^^^^^^^^
-**April 12th 2017**: New release (v0.3)
+**April 14th 2017**: New release (0.3.1)
- Download and unpack the `latest release
- (v0.3) April 12th 2017: New release (v0.3) April 14th 2017: New release (0.3.1) Download and unpack the latest release
-(v0.3)Python
Download PCGRΒΆ
-
Download and unpack the data bundle (approx. 17Gb) in the PCGR directory
@@ -200,7 +200,7 @@~/pcgr-X.X
(replace X.X with the
-version number, e.g. ~/pcgr-0.3
)~/pcgr-0.3.1
)
gzip -dc pcgr.databundle.GRCh37.YYYYMMDD.tgz | tar xvf -
docker pull sigven/pcgr:0.3
(PCGR annotation engine)docker pull sigven/pcgr:0.3.1
(PCGR annotation engine)examples/tumor_sample.COAD.cna.tsv ~/pcgr-0.3 ~/pcgr-0.3/examples tumor_sample.COAD
+examples/tumor_sample.COAD.cna.tsv ~/pcgr-0.3.1 ~/pcgr-0.3.1/examples tumor_sample.COAD
This command will run the Docker-based PCGR workflow and produce the following output files in the examples folder: