diff --git a/README.md b/README.md
index 69786c4c..2c60ff33 100755
--- a/README.md
+++ b/README.md
@@ -8,14 +8,16 @@ The Personal Cancer Genome Reporter (PCGR) is a stand-alone software package for
### News
-* _November 14th 2017_: **0.5.0 release**
+* _November 14th 2017_: **0.5.1 release**
* Updated version of VEP (v90)
* Updated versions of ClinVar, Uniprot KB, CIViC, CBMDB
* Removal of ExAC (replaced by gnomAD), removal of COSMIC due to licensing restrictions
* Users can analyze samples run without matching control (i.e. tumor-only)
* PCGR pipeline is now configured through a [TOML-based configuration file](https://github.com/toml-lang/toml)
* Bug fixes / general speed improvements
- * _Work in progress (0.5.1 release): Export of report data through JSON_
+ * _Work in progress: Export of report data through JSON_
+* _November 14th 2017_: **0.5.1 release**
+ * Bug fixing (VCF validation)
### Example reports
* [Report for a breast tumor sample (TCGA)](http://folk.uio.no/sigven/tumor_sample.BRCA.0.5.0.pcgr.html)
@@ -30,7 +32,7 @@ If you use PCGR, please cite our preprint paper:
Sigve Nakken, Ghislain Fournous, Daniel Vodák, Lars Birger Aaasheim, Ola Myklebost, and Eivind Hovig. __Personal Cancer Genome Reporter: Variant Interpretation Report For Precision Oncology__ (2017). bioRxiv. doi:[10.1101/122366](https://doi.org/10.1101/122366)
-### Annotation resources included in PCGR (v0.5.0)
+### Annotation resources included in PCGR (v0.5.1)
* [VEP v90](http://www.ensembl.org/info/docs/tools/vep/index.html) - Variant Effect Predictor release 90 (GENCODE v27 as the gene reference dataset)
* [dBNSFP v3.4](https://sites.google.com/site/jpopgen/dbNSFP) - Database of non-synonymous functional predictions (March 2017)
@@ -71,14 +73,14 @@ A local installation of Python (it has been tested with [version 2.7.13](https:/
#### STEP 2: Download PCGR
-1. Download and unpack the [latest software release (0.5.0)](https://github.com/sigven/pcgr/releases/latest)
+1. Download and unpack the [latest software release (0.5.1)](https://github.com/sigven/pcgr/releases/latest)
2. Download and unpack the data bundle (approx. 16Gb) in the PCGR directory
- * Download [the accompanying data bundle](https://drive.google.com/file/d/1ZKDef-dsRA4rMv5jXU8vrBj5PvwOZ3vb/) from Google Drive to `~/pcgr-X.X` (replace _X.X_ with the version number, e.g `~/pcgr-0.5.0`)
+ * Download [the accompanying data bundle](https://drive.google.com/file/d/1ZKDef-dsRA4rMv5jXU8vrBj5PvwOZ3vb/) from Google Drive to `~/pcgr-X.X` (replace _X.X_ with the version number, e.g `~/pcgr-0.5.1`)
* Unpack the data bundle, e.g. through the following Unix command: `gzip -dc pcgr.databundle.GRCh37.YYYYMMDD.tgz | tar xvf -`
A _data/_ folder within the _pcgr-X.X_ software folder should now have been produced
-3. Pull the [PCGR Docker image (0.5.0)](https://hub.docker.com/r/sigven/pcgr/) from DockerHub (approx 4.2Gb):
- * `docker pull sigven/pcgr:0.5.0` (PCGR annotation engine)
+3. Pull the [PCGR Docker image (0.5.1)](https://hub.docker.com/r/sigven/pcgr/) from DockerHub (approx 4.2Gb):
+ * `docker pull sigven/pcgr:0.5.1` (PCGR annotation engine)
#### STEP 3: Input preprocessing
@@ -124,7 +126,7 @@ A tumor sample report is generated by calling the Python script __pcgr.py__, whi
positional arguments:
pcgr_dir PCGR base directory with accompanying data directory,
- e.g. ~/pcgr-0.5.0
+ e.g. ~/pcgr-0.5.1
output_dir Output directory
configuration_file PCGR configuration file (TOML format)
sample_id Tumor sample/cancer genome identifier - prefix for
@@ -158,9 +160,9 @@ The configuration file, formatted using [TOML](https://github.com/toml-lang/toml
The _examples_ folder contain input files from two tumor samples sequenced within TCGA. It also contains a PCGR configuration file. A report for a colorectal tumor case can be generated by running the following command in your terminal window:
-`python pcgr.py --input_vcf ~/pcgr-0.5.0/examples/tumor_sample.COAD.vcf.gz`
-`--input_cna ~/pcgr-0.5.0/examples/tumor_sample.COAD.cna.tsv`
-` ~/pcgr-0.5.0/examples ~/pcgr-0.5.0/examples/pcgr_configuration.toml tumor_sample.COAD`
+`python pcgr.py --input_vcf ~/pcgr-0.5.1/examples/tumor_sample.COAD.vcf.gz`
+`--input_cna ~/pcgr-0.5.1/examples/tumor_sample.COAD.cna.tsv`
+` ~/pcgr-0.5.1/examples ~/pcgr-0.5.1/examples/pcgr_configuration.toml tumor_sample.COAD`
This command will run the Docker-based PCGR workflow and produce the following output files in the _examples_ folder:
diff --git a/docs/_build/doctrees/environment.pickle b/docs/_build/doctrees/environment.pickle
index 63bc3538..ede4fe0f 100644
Binary files a/docs/_build/doctrees/environment.pickle and b/docs/_build/doctrees/environment.pickle differ
diff --git a/docs/_build/doctrees/getting_started.doctree b/docs/_build/doctrees/getting_started.doctree
index 8ac4480c..aadf8c6d 100644
Binary files a/docs/_build/doctrees/getting_started.doctree and b/docs/_build/doctrees/getting_started.doctree differ
diff --git a/docs/_build/doctrees/output.doctree b/docs/_build/doctrees/output.doctree
index 5e28c661..50a2e8ce 100644
Binary files a/docs/_build/doctrees/output.doctree and b/docs/_build/doctrees/output.doctree differ
diff --git a/docs/_build/html/_sources/getting_started.rst.txt b/docs/_build/html/_sources/getting_started.rst.txt
index 979d70a9..c54caa5a 100644
--- a/docs/_build/html/_sources/getting_started.rst.txt
+++ b/docs/_build/html/_sources/getting_started.rst.txt
@@ -55,7 +55,7 @@ Download PCGR
^^^^^^^^^^^^^
- Download and unpack the `latest software release
- (0.5.0) Download and unpack the latest software release
-(0.5.0)Python¶
Download and unpack the data bundle (approx. 16Gb) in the PCGR directory
@@ -210,7 +210,7 @@~/pcgr-X.X
(replace X.X with the
-version number, e.g. ~/pcgr-0.5.0
)~/pcgr-0.5.1
)
gzip -dc pcgr.databundle.GRCh37.YYYYMMDD.tgz | tar xvf -
docker pull sigven/pcgr:0.5.0
(PCGR annotation engine)docker pull sigven/pcgr:0.5.1
(PCGR annotation engine)--input_cna ~/pcgr-0.5.0/examples/tumor_sample.COAD.cna.tsv
-~/pcgr-0.5.0/examples ~/pcgr-0.5.0/examples/pcgr_configuration.toml tumor_sample.COAD
+python pcgr.py --input_vcf ~/pcgr-0.5.1/examples/tumor_sample.COAD.vcf.gz
+--input_cna ~/pcgr-0.5.1/examples/tumor_sample.COAD.cna.tsv
+~/pcgr-0.5.1/examples ~/pcgr-0.5.1/examples/pcgr_configuration.toml tumor_sample.COAD
This command will run the Docker-based PCGR workflow and produce the following output files in the examples folder: