-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDay-27-Find Right Interval.cpp
87 lines (57 loc) · 2.43 KB
/
Day-27-Find Right Interval.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i.
For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array.
Note:
You may assume the interval's end point is always bigger than its start point.
You may assume none of these intervals have the same start point.
Example 1:
Input: [ [1,2] ]
Output: [-1]
Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: [ [3,4], [2,3], [1,2] ]
Output: [-1, 0, 1]
Explanation: There is no satisfied "right" interval for [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point;
For [1,2], the interval [2,3] has minimum-"right" start point.
Example 3:
Input: [ [1,4], [2,3], [3,4] ]
Output: [-1, 2, -1]
Explanation: There is no satisfied "right" interval for [1,4] and [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point.
NOTE: input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature.
class Solution {
public:
int bSearch(vector<int> &first, int item){
int l=0, h=first.size()-1;
while(l<=h){
int mid=l+(h-l)/2;
if(item>first[mid]) l=mid+1;
else h=mid-1;
}
return l;
}
vector<int> findRightInterval(vector<vector<int>>& intervals) {
int n=intervals.size();
vector<int> ans;
unordered_map<int, int> mp; // <start, index>
for(int i=0;i<n;i++){
mp[intervals[i][0]]=i;
}
vector<int> first;
for(int i=0;i<n;i++)
first.push_back(intervals[i][0]);
sort(first.begin(), first.end());
for(int i=0;i<n;i++){
int item=intervals[i][1];
int key=bSearch(first, item);
if(key==n)
ans.push_back(-1);
else if(key==0){
if(intervals[i][1]<=first[0])
ans.push_back(mp[first[0]]);
else ans.push_back(-1);
} else ans.push_back(mp[first[key]]);
}
return ans;
}
};