-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
111 lines (86 loc) · 2.79 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Importing modules and packages
import random
import typing as t
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_moons
import nanotorch as torch
import nanotorch.nn as nn
# Setting seed for reproducibility
np.random.seed(1337)
random.seed(1337)
# Loading dataset from Sklearn
X, y = make_moons(100, noise=0.1)
y = y * 2 - 1
# Build classification model using NanoTorch's APIs
class Net(nn.Module):
def __init__(self, in_features, out_features, hidden_features) -> None:
super().__init__()
self.linear_1 = nn.Linear(in_features, hidden_features)
self.linear_2 = nn.Linear(hidden_features, hidden_features)
self.linear_3 = nn.Linear(hidden_features, out_features)
self.relu = nn.ReLU()
def forward(self, x: torch.tensor) -> torch.tensor:
x = self.linear_1(x)
x = self.relu(x)
x = self.linear_2(x)
x = self.relu(x)
x = self.linear_3(x)
return x
# Defining hyperparameters
in_features = 2
out_features = 1
hidden_features = 16
learning_rate = 0.01
alpha = 1e-4
momentum = 0.9
epochs = 80
# Load defined model
model = Net(in_features, out_features, hidden_features)
print(model)
print(f"Number of parameters: {len(model.parameters())}")
# Load loss function and optimizer
criterion = nn.HingeEmbeddingLoss()
optimizer = torch.optim.SGD(
model.parameters(), lr=learning_rate, momentum=momentum
)
# Model training loop
for epoch in range(epochs):
# Forward pass
inputs = [list(map(torch.tensor, x)) for x in X]
y_pred = list(map(model, inputs))
loss = criterion(y, y_pred)
# L2 Regularization
loss += alpha * sum(
(parameter * parameter for parameter in model.parameters())
)
# Backward pass
model.zero_grad()
loss.backward()
# Update using gradient descent
optimizer.step()
# Calculating accuracy
accuracy = [(yi > 0) == (y_i.item() > 0) for yi, y_i in zip(y, y_pred)]
accuracy = sum(accuracy) / len(accuracy)
if epoch % 1 == 0:
print(
f"Epoch: [{epoch:>02}/{epochs}] | Loss: {loss.item():.4f} "
f"| Accuracy: {accuracy:.2f}"
)
# Plotting margin
step = 0.25
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(
np.arange(x_min, x_max, step), np.arange(y_min, y_max, step)
)
Xmesh = np.c_[xx.ravel(), yy.ravel()]
inputs = [list(map(torch.tensor, x)) for x in Xmesh]
y_pred = list(map(model, inputs))
Z = np.array([y_i.data > 0 for y_i in y_pred])
Z = Z.reshape(xx.shape)
_, axes = plt.subplots(1, 2)
axes[0].scatter(X[:, 0], X[:, 1], c=y, s=20, cmap="gnuplot", edgecolor="k")
axes[1].contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
axes[1].scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.show()